• Title/Summary/Keyword: nonlinear free surface condition

Search Result 67, Processing Time 0.022 seconds

CFD Application for Prediction of Ship Added Resistance in Waves

  • Kim, Byung-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-145
    • /
    • 2018
  • This paper deals with the added resistance of a ship in waves using computational fluid dynamics (CFD). The ship added resistance is one of the key considerations in the design of energy-efficient ship. In this study, the added resistance of a LNG carrier in head waves is computed using a CFD code to consider the nonlinearity and the viscous effects. The unsteady Reynolds Averaged Navier-Stokes equation (RANS) is numerically solved and the volume of fluid (VOF) approach is used to simulate the free surface flows. The length of incident wave varies from half the ship length to twice the ship length. To investigate the nonlinearity effect, both the linear wave condition and the nonlinear wave condition are considered. The heave and pitch motions are calculated along with the added resistance, and the wave contours are obtained. Grid convergence test is conducted thoroughly to achieve the converged motion and resistance values. The calculated results are compared and validated with experimental data.

SMALL AMPLITUDE WAVE IN SHALLOW WATER OVER LINEAR AND QUADRATIC SLOPING BEDS

  • Bhatta, Dambaru D.;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.53-65
    • /
    • 2003
  • Here we present a study of small-amplitude, shallow water waves on sloping beds. The beds considered in this analysis are linear and quadratic in nature. First we start with stating the relevant governing equations and boundary conditions for the theory of water waves. Once the complete prescription of the water-wave problem is available based on some assumptions (like inviscid, irrotational flow), we normalize it by introducing a suitable set of non-dimensional variables and then we scale the variables with respect to the amplitude parameter. This helps us to characterize the various types of approximation. In the process, a summary of equations that represent different approximations of the water-wave problem is stated. All the relevant equations are presented in rectangular Cartesian coordinates. Then we derive the equations and boundary conditions for small-amplitude and shallow water waves. Two specific types of bed are considered for our calculations. One is a bed with constant slope and the other bed has a quadratic form of surface. These are solved by using separation of variables method.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

Numerical Analysis on the Wave Resistance by the Theory of Slender Ships (세장선 이론에 의한 조파저항의 수치 해석)

  • Kim, In Chull
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.1-1
    • /
    • 1987
  • The accurate prediction of the ship wave resistance is very important to design ships which operate satisfactorily in a wave environment. Thus, work should continue on development and validation of methods to compute ship wave patterns and wave resistance. Research efforts to improve the prediction of ship waves and wavemaking resistance are categorized in two major areas. First is the development of higher-order theories to take account of the nonlinear effect of the free surface condition and improved analytical treatment of the body boundary condition. Second is the development of direct numerical methods aimed at solving body and free-surface boundary conditions as accurately as possible. A new formulation of the slender body theory for a ship with constant speed is developed by Maruo. It is quite different from the existing slender ship theory by Vossers, Maruo and Tuck. It may be regarded as a substitute for the Neumann-Kelvin approximation. In present work, the method of asymptotic expansion of the Kelvin source is applied to obtain a new wave resistance formulation in fluid of finite depth. It takes a simple form than existing theory.

Simulation of Standing Wave using Boundary Element Method (경계요소법(境界要素法)을 이용한 중복파(重複波)의 재현(再現))

  • Oh, Young Min;Lee, Kil Seong;Chun, In Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1445-1451
    • /
    • 1994
  • To calculate the wave pressure acting on coastal structures under the design wave condition, it is often necessary to numerically reproduce the big standing wave profiles close to wave breaking condition. For this, the governing equation and all nonlinear terms occurring in boundary conditions should be effectively considered in the numerical wave profile. In particular, the velocity square term in the free surface boundary condition is very important. A boundary element method is applied here to calculate the standing wave profile with the velocity square term fully treated by Newton iterative method. In order to check the validity of the method, the numerical wave profiles are compared to ones calculated by the perturbation method, the Fourier approximation method and the hydraulic experiment.

  • PDF

Effects of hydration structure on the femtosecond white light-induced phase transition to crystalline silicon nanocrystal having ultrabright narrowed luminescence

  • Choi, Kyong-Hoon;Wang, Kang-Kyun;Ha, Jeong-Hyon;Kim, Yong-Rok
    • Rapid Communication in Photoscience
    • /
    • v.4 no.3
    • /
    • pp.54-58
    • /
    • 2015
  • Under the condition of femtosecond impulsive nonlinear optical irradiation, the bright and narrowed blue emission of silicon nanocrystal was observed. This synthetic method produced very small (~ 4 nm) oxide-capped silicon nanocrystal having probably ultra small emitting core (~ 1 nm) inferred from luminescence. By controlling the stirring condition, very high efficiencies of luminescence ( 4 fold higher) were obtained compared with the other conventional femtosecond laser fragmentation methods, which was attributed to the differences in hydration shell structure during the femtosecond laser induced irreversible phase transition reaction. When we properly adjusted the irradiation times of the white light continuum and stirring condition, very homogeneous luminescent silicon nanocrystal bands having relatively sharp lineshape were obtained, which can be attributable to the luminescent core site isolated and free from the surface defects.

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF

A Study on Nonlinear Motions of Submerged Circular Cylinder in Regular Wave (정현파중에서의 잠수된 원형실린더의 비선형 운동에 관한 연구)

  • Ho-Young Lee;Jong-Heul Hwang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.32-39
    • /
    • 1998
  • A numerical analysis for large amplitude motions of submerged circular cylinder is presented. The method is based on potential theory and two-dimensional motions in regular harmonic waves are tented as an initial value problem. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed an assumed common boundary to a linear solution in outer domain. Calculations of the large amplitude motion of a submerged circular cylinder are directly simulated in time domain. It is shown that relative motion between the body and fluid particle gives a significant effect on the lift and drift motions.

  • PDF

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.