• 제목/요약/키워드: nonlinear flutter analysis

검색결과 50건 처리시간 0.017초

주파수 영역에서의 2단 접는 날개 공탄성 해석 (Aeroelastic Analysis in Frequency Domain for Wings with Double-Folding Mechanism)

  • 강명구;김기언
    • 한국군사과학기술학회지
    • /
    • 제9권4호
    • /
    • pp.104-113
    • /
    • 2006
  • To identify aeroelastic characteristics of wings with double-folding mechanism, aeroelastic analyses are performed. There are four wing models which consist of one linear model and three nonlinear models. The nonlinear models have one or two freeplay nonlinearties. The describing function method is used to approximately examine nonlinear effects. The aeroelastic module in MSC/NASTRAN is used to study the aeroelastic characteristics of the considered wing models. The effects of the folding mechanism and amplitude ratio are examined. As the amplitude ratio increases, the flutter speeds approach to those of the wing model with only one nonlinearity. The numerical results show that the flutter speeds of the wings with double-folding mechanism can be lower or higher than those of the wing model with only one folding mechanism depending upon the direction of the second folding mechanism.

Graphical technique for the flutter analysis of flexible bridge

  • Lee, Tzen Chin;Go, Cheer Germ
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.41-49
    • /
    • 1999
  • The flutter of a bridge is induced by self-excited force factors such as lift, drag and aerodynamic moment. These factors are associated with flutter derivatives in the analysis of wind engineering. The flutter derivatives are the function of structure configuration, wind velocity and response circular frequency. Therefore, the governing equations for the interaction between the wind and dynamic response of the structure are complicated and highly nonlinear. Herein, a numerical algorithm through graphical technique for the solution of wind at flutter is presented. It provides a concise approach to the solution of wind velocity at flutter.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석 (Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity)

  • 배재성;신원호;이인;신영석
    • 한국항공우주학회지
    • /
    • 제30권7호
    • /
    • pp.29-35
    • /
    • 2002
  • 접는 미사일 조종날개의 공력탄성학적 특성을 조사하였다. 접는 미사일 조종날개는 2차원 익형 모델로 가정하였다. 초음속 DPM을 이용하여 초음속 비정상 공기력을 계산하였으며, 최소 상태 변수 근사법을 이용하여 비정상 공기력을 근사화하였다. 선형 및 비선형 플러터 해석을 위해 근궤적법과 시간적분법을 사용하였다. 비선형 플러터 해석을 위해 전개부의 힌지는 비대칭 이선형 스프링으로 가정하였으며, 기술함수를 이용하여 선형화하였다. 플러터 해석으로부터, 비선형 파라미터가 공력탄성학적 특성에 미치는 영향을 조사하였다.

비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자 (Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down)

  • 임주섭;이상욱;김태욱
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

Nonlinear fluid-structure interaction of bridge deck: CFD analysis and semi-analytical modeling

  • Grinderslev, Christian;Lubek, Mikkel;Zhang, Zili
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.381-397
    • /
    • 2018
  • Nonlinear behavior in fluid-structure interaction (FSI) of bridge decks becomes increasingly significant for modern bridges with increasing spans, larger flexibility and new aerodynamic deck configurations. Better understanding of the nonlinear aeroelasticity of bridge decks and further development of reduced-order nonlinear models for the aeroelastic forces become necessary. In this paper, the amplitude-dependent and neutral angle dependent nonlinearities of the motion-induced loads are further highlighted by series of computational fluid dynamics (CFD) simulations. An effort has been made to investigate a semi-analytical time-domain model of the nonlinear motion induced loads on the deck, which enables nonlinear time domain simulations of the aeroelastic responses of the bridge deck. First, the computational schemes used here are validated through theoretically well-known cases. Then, static aerodynamic coefficients of the Great Belt East Bridge (GBEB) cross section are evaluated at various angles of attack, leading to the so-called nonlinear backbone curves. Flutter derivatives of the bridge are identified by CFD simulations using forced harmonic motion of the cross-section with various frequencies. By varying the amplitude of the forced motion, it is observed that the identified flutter derivatives are amplitude-dependent, especially for $A^*_2$ and $H^*_2$ parameters. Another nonlinear feature is observed from the change of hysteresis loop (between angle of attack and lift/moment) when the neutral angles of the cross-section are changed. Based on the CFD results, a semi-analytical time-domain model for describing the nonlinear motion-induced loads is proposed and calibrated. This model is based on accounting for the delay effect with respect to the nonlinear backbone curve and is established in the state-space form. Reasonable agreement between the results from the semi-analytical model and CFD demonstrates the potential application of the proposed model for nonlinear aeroelastic analysis of bridge decks.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사 (Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces)

  • 유재한;김동현;권혁준;이인;김영익;이희우
    • 한국항공우주학회지
    • /
    • 제30권6호
    • /
    • pp.92-100
    • /
    • 2002
  • 본 연구에서는 천음속 미소교란 방정식을 이용하여 조종면의 강제 조화 운동을 고려한 전기체 형상에 대하여 천음속/초음속 비선형 플러터 특성을 파악할 수 있는 정밀 해석 시스템을 개발하였다. 본 시스템에는 충격파의 비선형 특성을 고려하기 위해 전산구조동역학, 유한요소해석 및 전산유체역학 기법을 동시에 연계하여 적용하는 연계시간 적분법을 도입하였다. 복잡한 전기체 형상에 대한 효과적인 격자생성을 위해 자체 자동격자 생성프로그램이 개발되었다. 천음속과 초음속 속도 영역에서 전기체 항공기에 대한 정적/동적 공탄성 특성을 고찰하였으며, 시간 영역에서 조종면 강제 조화운동에 대한 플러터 비행시험 시뮬레이션 결과들을 제시하였다.

ZAERO를 이용한 시간영역에서의 접는 날개 비선형 공탄성 해석 (Nonlinear Aeroelastic Analysis in Time Domain for Folded Fins using ZAERO)

  • 이동민;김정영
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.159-165
    • /
    • 2008
  • The purpose of this paper is to study the impact of concentrated nonlinearities, freeplays, on the aeroelastic behaviors of single- and double-folded control fins. The nonlinearities may cause limit cycle oscillation(LCO) below the linear flutter boundary. The effects of nonlinear hinges on LCO characteristics of the fins are examined as flight condition changes. Nonlinear time-domain flutter analyses are performed, using ZAERO. The results show that the aeroelastic stability boundaries of double-folded fin(DF) are higher than those of the single-folded fin(SF) and the lower hinge freeplay impact more critically on the stability than the upper hinge freeplay of the DF.