• Title/Summary/Keyword: nonlinear failure

Search Result 842, Processing Time 0.03 seconds

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L.;Gomes, Guilherme F.;Mendez, Yohan D.;Almeida, Fabricio A.;Santos, Valquiria C.;Cunha, Sebastiao S.Jr.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2018
  • Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Earthquake Simulation Tests on a 1:5 Scale 10-Story R.C. Residential Building Model (1:5 축소 10층 내력벽식 R.C. 공동주택의 지진모의실험)

  • Lee, Han-Seon;Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.67-80
    • /
    • 2011
  • This paper presents the results of shaking table tests on a 1:5 scale 10-story R.C. wall-type residential building model. The following conclusions are drawn based on the test results. (1) The model responded linear elastically under the excitations simulating an earthquake with a return period of 50 years, and showed a nonlinear response under the excitations simulating the design earthquake of Korea. (2) The model showed a significant strength drop under the maximum considered earthquake, with a return period of 2400 years. (3) The major portion of the resistance to lateral inertia forces came from the walls used for the elevator and stair case. (4) Finally, the damage and failure modes appear to be due to the flexural behavior of walls and slabs. A significant deterioration of stiffness and an elongation of the fundamental periods were observed under increased earthquake excitations.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

Experimental study and FE analysis of tile roofs under simulated strong wind impact

  • Huang, Peng;Lin, Huatan;Hu, Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.26 no.2
    • /
    • pp.75-87
    • /
    • 2018
  • A large number of low-rise buildings experienced serious roof covering failures under strong wind while few suffered structural damage. Clay and concrete tiles are two main kinds of roof covering. For the tile roof system, few researches were carried out based on Finite Element (FE) analysis due to the difficulty in the simulation of the interface between the tiles and the roof sheathing (the bonding materials, foam or mortar). In this paper, the FE analysis of a single clay or concrete tile with foam-set or mortar-set were built with the interface simulated by the equivalent nonlinear springs based on the mechanical uplift and displacement tests, and they were expanded into the whole roof. A detailed wind tunnel test was carried out at Tongji University to acquire the wind loads on these two kinds of roof tiles, and then the test data were fed into the FE analysis. For the purpose of validation and calibration, the results of FE analysis were compared with the full-scale performance ofthe tile roofs under simulated strong wind impact through one-of-a-kind Wall of Wind (WoW) apparatus at Florida International University. The results are consistent with the WoW test that the roof of concrete tiles with mortar-set provided the highest resistance, and the material defects or improper construction practices are the key factors to induce the roof tiles' failure. Meanwhile, the staggered setting of concrete tiles would help develop an interlocking mechanism between the tiles and increase their resistance.

Static behavior of stud shear connectors with initial damage in steel-UHPC composite bridges

  • Qi, Jianan;Tang, Yiqun;Cheng, Zhao;Xu, Rui;Wang, Jingquan
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.413-421
    • /
    • 2020
  • For steel-concrete girders made composite using shear studs, initial damage on studs induced by weld defect, unexpected overloading, fatigue and others might degrade the service performance and even threaten the structural safety. This paper conducted a numerical study to investigate the static behavior of damaged stud shear connectors that were embedded in ultra high performance concrete (UHPC). Parameters included damage degree and damage location. The material nonlinear behavior was characterized by multi-linear stress-strain relationship and damage plasticity model. The results indicated that the shear strength was not sensitive to the damage degree when the damage occurred at 2/3d (d is the stud diameter) from the stud root. An increased stud area would be engaged in resisting shear force as the distance of damage location from stud root increased and the failure section becomes inclined, resulting in a less reduction in the shear strength and shear stiffness. The reduction factor was proposed to consider the degradation of the shear strength of the damaged stud. The reduction factor can be calculated using two approaches: a linear relationship and a square relationship with the damage degree corresponding to the shear strength dominated by the section area and the nominal diameter of the damaged stud. It was found that the proposed method is preferred to predict the shear strength of a stud with initial damage.

Numerical analysis of the seismic performance of RHC-PVCT short columns

  • Xue, Jianyang;Zhao, Xiangbi;Ke, Xiaojun;Zhang, Fengliang;Ma, Linlin
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • This paper presents the results of cyclic loading tests on new high-strength concrete (HC) short columns. The seismic performance and deformation capacity of three reinforced high-strength concrete filled Polyvinyl Chloride tube (RHC-PVCT) short columns and one reinforced high-strength concrete (RHC), under pseudo-static tests (PSTs) with vertical axial force was evaluated. The main design parameters of the columns in the tests were the axial compression ratio, confinement type, concrete strength, height-diameter ratio of PVCT. The failure modes, hysteretic curves, skeleton curves of short columns were presented and analyzed. Placing PVCT in the RHC column could be remarkably improved the ultimate strength and energy dissipation of columns. However, no fiber element models have been formulated for computing the seismic responses of RHC-PVCT columns with PVT tubes filled with high-strength concrete. Nonlinear finite element method (FEM) was conducted to predict seismic behaviors. Finite element models were verified through a comparison of FEM results with experimental results. A parametric study was then performed using validated FEM models to investigate the effect of several parameters on the mechanical properties of RHC-PVCT short columns. The parameters study indicated that the concrete strength and the ratio of diameter to height affected the seismic performance of RHC-PVCT short column significantly.

An Assessment of Rock Pillar Stability in Tunnel Asymmetric Diverging Area using the Mohr-Coulomb Failure Theory (Mohr-Coulomb 파괴접근도 방법을 이용한 비대칭 분기부 암반필러의 안정성 평가)

  • Lee, Choul-Kyu;Lee, Kang-Il;Kang, Jae-Gi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.17-23
    • /
    • 2016
  • This study assessed the behavior of rock pillar in tunnel asymmetric diverging area by using a three dimensional numerical analysis. The stability of pillar is very important for the ensure the stability of the tunnel asymmetric diverging area. Based on parameters affecting the behavior of rock pillar, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the rock pillar width increases, the change curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. By the assessment of the minimum safety factor, a safety factor chart on the behavior of rock pillar in tunnel asymmetric diverging area was suggested.

Prediction of Material Behavior and Failure of Fresh Water Ice Based on Viscoplastic-Damage Model (점소성 손상모델 기반 담수빙 재료거동 및 파손 예측)

  • Choi, Hye-Yeon;Lee, Chi-Seung;Lee, Jong-Won;Ahn, Jae-Woo;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.275-280
    • /
    • 2011
  • In the present study, a unified viscoplastic-damage model has been applied in order to describe the mechanical characteristics of fresh water ice such as nonlinear material behavior and volume fraction. The strain softening phenomenon of fresh water ice under quasi-static compressive loading has been evaluated based on unified viscoplastic model. The material degradation such as growth of slip/fraction has quite close relation with material inside damage. The volume fraction phenomenon of fresh water ice has been identified based on volume fraction (nucleation and growth of damage) model. The viscoplastic-damage model has been transformed to the fully implicit formulation and the discretized formulation has been implemented to ABAQUS user defined subroutine (User MATerial: UMAT) for the benefit of application of commercial finite element program. The proposed computational analysis method has been compared to uni-axial compression test of fresh water ice in order to validate the compatibilities, clarities and usefulness.

An Experiment and Analysis of Precast Concrete Baseplate on Bimodal Tram Dedicated Bridge (바이모달 트램(Bimodal Tram) 전용교량에 적용된 프리캐스트 콘크리트 바닥판의 거동특성 분석에 관한 실험 및 해석적 연구)

  • Cheon, Ju Hyoun;Joo, Young Jong;Kim, Ryang Gyun;Yoon, Hee Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.116-124
    • /
    • 2011
  • To purpose of this study is to develop the new type of precast concrete baseplate which is only for bimodal tram. The experiments with real size specimens, which are hollowed precast baseplate, prove the efficacy of new designed baseplate by comparing with the result of RCAHEST. Through tests progressed according to different loading locations, the specimens show the stability by the safety factor of 8~9. Also the results of RCAHEST that is the nonlinear finite element method program, appropriately estimate the occuring crack on concrete, yielding reinforcement and ultimate behavior at failure.

Evaluation of Progressive Collapse Resisting Capacity of RC structure using the Applied Element Method (응용요소법을 이용한 철근콘크리트 구조물의 연쇄붕괴 저항성능 평가)

  • Park, Hoon;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Progressive collapse is generally defined as a local failure of structural members occurring due to abnormal load which results in the partial collapse or total collapse of a structure. Unlike progressive collapse, explosive demolition is a method of inducing the total collapse of structure by removing all or portion of structural members. In explosive demolition the partial collapse of the structural members can be controlled at appropriate time intervals by blasting, to induce the progressive collapse of the structure and control the collapse behavior. In this study, a nonlinear dynamic analysis was carried out in order to apply the progressive collapse process to explosive demolition design of the RC structure. The occurrence of progressive collapse of analytical models was examined according to the number of floors, the removed column height and span length. For models that resisted progressive collapse, progressive collapse resisting capacity was evaluated.