• Title/Summary/Keyword: nonlinear failure

Search Result 842, Processing Time 0.025 seconds

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

Direct Lagrangian-based FSI formulation for seismic analysis of reinforced concrete circular liquid-containing tanks

  • Erfan Shafei;Changiz Gheyratmand;Saeed Tariverdilo
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.165-176
    • /
    • 2024
  • In this study, a direct Lagrangian-based three-dimensional computational procedure is developed to evaluate the seismic performance of reinforced concrete liquid-containing circular tanks (RC-LCT). In this approach, fluid-structure interaction (FSI), material nonlinearity, and liquid-structure large deformations are formulated realistically. Liquid is modeled using Mie-Grüneisen equation of state (EOS) in compressible form considering the convective and impulsive motions of fluid. The developed numerical framework is validated based on a previous study. Further, nonlinear analyses are carried out to assess the seismic performance of RC-LCT with various diameter-to-liquid height ratios ranging from 2.5 to 4.0. Based on observations, semi-deep tanks (i.e., D/Hl=2.5) show low collapse ductility due to their shear failure mode while shallow tanks (i.e., D/Hl=4.0) behave in a more ductile manner due to their dominant wall membrane action. Furthermore, the semi-deep tanks provide the least over-strength and ductility due to their catastrophic failure with little energy dissipation. This study shows that LCTs can be categorized as between immediately operational and life safety levels and therefore a drift limiting criterion is necessary to prevent probable damages during earthquakes.

Energy Dissipation Capacity of the T-stub Fastened by SMA bars (SMA 강봉으로 체결된 T-stub의 에너지소산능력)

  • Yang, Jae Guen;Baek, Min Chang;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

Threshold Crossing Rate, Phase Distribution and Group Properties of Nonlinear Random Waves of finite Bandwidth (유한한 Bandwidth를 갖는 비선형 불규칙 파열에서의 Threshold Crossing Rate, 위상분포와 파군특성)

  • Jo, Yong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.225-233
    • /
    • 1997
  • The nonlinear effects on the statistical properties of wave groups in terms of the average nomber of waves in a group and the mean number of waves in a high run is studied in this paper utilizing the complex envelope and total phase function, random variable transformation technique and perturbation method. It tures out that the phase distribution is modified significantly by nonlinearities and it show systematic excess of values near the mean phase and the corresponding symmetrical deficiency on both sides away from the mean. for the case of threshold crossing rate, it turns out that threshold crossing rate reaches its maxima just below the mean water level rather than zero and considerable amount of probability mass is shifted toward the larger values of water surface elevation as nonlinearity is getting profound. Furthermore, the mean waves in a high run associated with nonlinear wave are shown to have larger values than the linear counterpart. Similar trend can also be found in the average number of waves in a group.

  • PDF

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Modelling beam-to-column joints in seismic analysis of RC frames

  • Lima, Carmine;Martinelli, Enzo;Macorini, Lorenzo;Izzuddin, Bassam A.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.119-133
    • /
    • 2017
  • Several theoretical and analytical formulations for the prediction of shear strength in reinforced concrete (RC) beam-to-column joints have been recently developed. Some of these predictive models are included in the most recent seismic codes and currently used in practical design. On the other hand, the influence of the stiffness and strength degradations in RC joints on the seismic performance of RC framed buildings has been only marginally studied, and it is generally neglected in practice-oriented seismic analysis. To investigate such influence, this paper proposes a numerical description for representing the cyclic response of RC exterior joints. This is then used in nonlinear numerical simulations of RC frames subjected to earthquake loading. According to the proposed strategy, RC joints are modelled using nonlinear rotational spring elements with strength and stiffness degradations and limited ductility under cyclic loading. The proposed joint model has been firstly calibrated against the results from experimental tests on 12 RC exterior joints. Subsequently, nonlinear static and dynamic analyses have been carried out on two-, three- and four-storey RC frames, which represent realistic existing structures designed according to old standards. The numerical results confirm that the global seismic response of the analysed RC frames is strongly affected by the hysteretic damage in the beam-to-column joints, which determines the failure mode of the frames. This highlights that neglecting the effects of joints damage may potentially lead to non-conservative seismic assessment of existing RC framed structures.

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

Decentralized Fuzzy Output Feedback Control of Nonlinear Networked Control Systems for Wireless Sensor Network (무선 센서 네트워크를 위한 비선형 네트워크 제어 시스템의 출력 궤환 분산 퍼지 제어기 설계)

  • Joo, Young-Hoon;Ra, In-Ho;Koo, Geun-Bum;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.323-328
    • /
    • 2009
  • In this paper, a decentralized fuzzy output feedback controller for the nonlinear networked control system is proposed for wireless sensor network. Especially, it is assumed that the networked control system has the output packet loss and the input transmission failure. For the fuzzy control of the nonlinear subsystem, it presents Takagi-Sugeno (T-S) fuzzy model of each subsystem and it designs the decentralized fuzzy output feedback controller. The stability condition of the closed-loop system with the proposed controller is obtained by Lyapunov functional. The obtained stability condition is represented to the linear matrix inequality (LMI) form, and the control gain is obtained by LMI. An example is given to show the verification discussed throughout the paper.