• Title/Summary/Keyword: nonlinear elliptic obstacle problem

Search Result 2, Processing Time 0.015 seconds

ELLIPTIC OBSTACLE PROBLEMS WITH MEASURABLE NONLINEARITIES IN NON-SMOOTH DOMAINS

  • Kim, Youchan;Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.239-263
    • /
    • 2019
  • The $Calder{\acute{o}}n$-Zygmund type estimate is proved for elliptic obstacle problems in bounded non-smooth domains. The problems are related to divergence form nonlinear elliptic equation with measurable nonlinearities. Precisely, nonlinearity $a({\xi},x_1,x^{\prime})$ is assumed to be only measurable in one spatial variable $x_1$ and has locally small BMO semi-norm in the other spatial variables x', uniformly in ${\xi}$ variable. Regarding non-smooth domains, we assume that the boundaries are locally flat in the sense of Reifenberg. We also investigate global regularity in the settings of weighted Orlicz spaces for the weak solutions to the problems considered here.

REGULARITY OF NONLINEAR VECTOR VALUED VARIATIONAL INEQUALITIES

  • Kim, Do-Wan
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.565-577
    • /
    • 2000
  • We consider regularity questions arising in the degenerate elliptic vector valued variational inequalities -div(|▽u|p-2∇u)$\geq$b(x, u, ∇u) with p$\in$(1, $\infty$). It is a generalization of the scalar valued inequalities, i.e., the obstacle problem. We obtain the C1,$\alpha$loc regularity for the solution u under a controllable growth condition of b(x, u, ∇u).

  • PDF