• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.031 seconds

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Evaporation Theory for Reclaimed Clay (준설 점토 지반에서의 증발 이론 개발)

  • 이형주;이인모;이영남;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.55-64
    • /
    • 2003
  • Desiccation of a soil is basically the removal of water by evaporation, which is controlled by evaporativity and evaporability. Surface evaporation improves the trafficability which is essential for the access of construction equipment in the area reclaimed with soft clay. The existing traditional methods for evaluating evaporation can not account for the deformation of reclaimed soft soils during evaporation. Therefore, a theoretical model for predicting the rate of evaporation from the surface of a deformable material is proposed. The model is based on a system of equations for coupled heat and mass transfer in unsaturated soils. The modified pressure plate extractor test and glass desiccator test were carried out to obtain the soil-water characteristic curve for a deformable soil. The column drying test was conducted to investigate one dimensional water flow, heat flow and evaporation in the surface. A finite difference program was developed to solve the coupled nonlinear partial differential equations, which permit the study of water, vapor and heat flows in the deformable soil. Comparison between measured and simulated values shows a reasonably good matching between the two.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Numerical analysis of the seismic performance of RHC-PVCT short columns

  • Xue, Jianyang;Zhao, Xiangbi;Ke, Xiaojun;Zhang, Fengliang;Ma, Linlin
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • This paper presents the results of cyclic loading tests on new high-strength concrete (HC) short columns. The seismic performance and deformation capacity of three reinforced high-strength concrete filled Polyvinyl Chloride tube (RHC-PVCT) short columns and one reinforced high-strength concrete (RHC), under pseudo-static tests (PSTs) with vertical axial force was evaluated. The main design parameters of the columns in the tests were the axial compression ratio, confinement type, concrete strength, height-diameter ratio of PVCT. The failure modes, hysteretic curves, skeleton curves of short columns were presented and analyzed. Placing PVCT in the RHC column could be remarkably improved the ultimate strength and energy dissipation of columns. However, no fiber element models have been formulated for computing the seismic responses of RHC-PVCT columns with PVT tubes filled with high-strength concrete. Nonlinear finite element method (FEM) was conducted to predict seismic behaviors. Finite element models were verified through a comparison of FEM results with experimental results. A parametric study was then performed using validated FEM models to investigate the effect of several parameters on the mechanical properties of RHC-PVCT short columns. The parameters study indicated that the concrete strength and the ratio of diameter to height affected the seismic performance of RHC-PVCT short column significantly.

A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model

  • Hashemi, Seyed Shaker;Sadeghi, Kabir;Javidi, Saeid;Malakooti, Mahmoud
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.285-294
    • /
    • 2019
  • In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.

Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame (비연성 철근 콘크리트 중력 프레임에 의한 지진 보강)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF

Seismic Performance of Square RC Column Confined with Spirals (나선철근으로 횡구속된 정사각형 RC 기둥의 내진성능)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.88-97
    • /
    • 2012
  • The objective of this research is to investigate the seismic performance and flexure-shear behavior of square reinforced concrete bridge piers with solid and hollow cross section. Test specimens were nonseismically designed with the aspect ratio 4.5 Two reinforced concrete columns were tested under constant axial load while subjected to lateral load reversals with increasing drift levels. Longitudinal steel ratio was 2.217 percent. The transverse reinforcement ratio As/($s{\cdot}h$), corresponding to 58 percent of the minimum lateral reinforcement required by Korean Bridge Design Specifications for seismic detailing, which represent existing columns not designed by the current seismic design specifications or designed by limited ductility concept. This study are to provide quantitative reference data for the limited ductility design concept and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Failure behavior, ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation, effective stiffness, plastic hinge length, strain of reinforcements and nonlinear analysis are investigated and discussed in this paper.

Nonlinear Behavior Analysis of RC Shear Wall Using Truss Theory (트러스 이론을 이용한 철근 콘크리트 전단벽의 비선형 거동해석)

  • Seo, Soo-Yeon;Kim, Jeong-Sik;Choi, Yun-Chul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Recently, a concern to verify the displacement capacity of shear wall has been arised to produce suitable data for the performance based design. In this paper, a process is presented to evaluate the displacement capacity of shear wall. The displacement of shear wall is expressed as the superposition of shear and flexural deformation. Variable crack angle truss model with a modification and sectional analysis method are used in calculating shear and flexural displacement, respectively. In addition, the effect of axial force and the contribution of vertical and horizontal reinforcements in wall are considered in the analysis. The accuracy of proposed method is evaluated by the comparison calculation results with previous test results. From the comparison, it was shown that the hysteretic behavior of shear wall could be well predicted by using the process. In the case with flange wall, however, the method overestimates the contribution of flange wall for strength and stiffness and underestimates for displacement capacity.

An Optimum Design of Sandwich Panel at Fixed Edges (고정지지된 Sandwich Panel의 최적설계에 관한 연구)

  • K.S. Kim;I.T. Kim;Y.Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.115-122
    • /
    • 1992
  • A sandwich element is a special Hybrid structural form of the composite construction, which is consisted of three main parts : thin, stiff and relatively high density faces separated by a thick, light, and weaker core material. In a sandwich construction, the shear deformation of the faces. Therefore, in the calculation of the bending stiffness, the shear effect should be included. In this paper, the minimum weight is selected as an object function, as the weight critical structures are usually composed of these kind of construction. To obtain the minimum weight of sandwich panel, the principle of minimum potential energy is used and as for the design constraints, the allowable bending stress of face material, the allowable shear stress of core material, the allowable value of panel deflection and the wrinkling stress of faces are adopted, as well as the different boundary conditions. For the engineering purpose of sandwich panel design, the results are tabulated, which are calculated by using the nonlinear optimization technique SUMT.

  • PDF

Study on a 2-Dimensional Dynamic Modeling Technique to Analyze the Overriding Phenomena of Rollingstock (열차의 타고오름 해석을 위한 2차원 충돌동역학 모델링 기법 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • This paper proposed a new 2-D multi-body dynamic modeling technique to analyze overriding behaviors taking place during train collision. This dynamic model is composed of nonlinear springs, dampers and masses by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model for rollingstock, energy absorbing capacities of collision elements, accelerations of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we chose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3-D finite element analysis, and established a 2-D multi-body dynamic model. This 2-D dynamic model was simulated under the train-to-train collision scenarios, and evaluated with 3-D virtual testing model. It was founded from the simulation results that this 2-D dynamic model could well predict overriding behaviors, and the modeling technique of carbody deformation was very important in overriding estimation.