• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.027 seconds

Vibration Analysis of Rotating Disk-Spindle System Using Finite Element Method and Substructure Synthesis (유한 요소법과 부분 구조 합성법을 이용한 회전 디스크-스핀들 계의 진동 해석)

  • Jeong, Myeong-Su;Jang, Geon-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2201-2210
    • /
    • 2000
  • Vibration of a rotating disk-spindle system is analyzed by using Hamilton's principle, FEM and substructure synthesis. A rotating disk undergoes the rigid body motion and the elastic deformation. It s equation of motion is derived by Kirchhoff plate theory and von Karman nonlinear strain. A rotating shaft is described by Rayleigh beam theory considering the axial rigid body motion. The stationay shaft supporting the rotating disk-spindle-bearing system is modeled by Euler beam theory, and the stiffness of ball bearing is determined by A.B.Jones' theory. FEM is used to solve the derived governing equations, and substructure synthesis is introduced to assemble each structure of the rotating disk-spindle system. The developed theory is applied to the spindle system of a 35' computer hard disk drive with 3 disks to verify the simulation results. The simulation results agree very well with the experimental ones. The proposed theory may be effectively expanded to the complex structure of a disk-spindle system.

Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects

  • Golabchi, Hadi;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.431-440
    • /
    • 2018
  • Fluid velocity analysis on the instability of pipes reinforced by silica nanoparticles ($SiO_2$) is presented in this paper. Mori-Tanaka model is used for obtaining the effective materials properties of the nanocomposite structure considering agglomeration effects. The well known Navier-Stokes equation is used for obtaining the applied force of fluid to pipe. Based on the Reddy higher-order shear deformation theory, the motion equations are derived based on energy method and Hamilton's principal. The frequency and critical fluid velocity of structure are calculated using differential quadrature method (DQM) so that the effects of different parameters such as volume fractions of SiO2 nanoparticles, SiO2 nanoparticles agglomeration, boundary conditions and geometrical parameters of pipes are considered on the nonlinear vibration and instability of the pipe. Results indicate that increasing the volume fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure are increased. Furthermore, considering SiO2 nanoparticles agglomeration, decreases the frequency and critical fluid velocity of the pipe.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals (크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire (화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Han, Hee-Chul;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

Analysis of Tension Mask Thermal Deformations under Localized Heating and Prediction of Electron Beam Landing Shifts (국부가열에 의한 Tension Mask 의 열변형 해석 및 전자빔의 오착 예측)

  • Shin, Woon-Seo;You, Se-Jonn;Jang, Bo-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.138-148
    • /
    • 1999
  • Thermal deformations of tension mask under localized heating are analyzed using finite element method and electron beam landing shifts are predicted by the analysis results. In CRT, electron beam landing shifts due to thermal deformations of the tension mask make the color purity of screen worse. In order to get the final results of thermal deformations, firstly the tension processes of the mask and following welding processes between the tensional mask and rail must be analyzed sequentially. And then, nonlinear transient thermo-elastic finite element analysis is performed on every part inside CRT including tension mask, wherein thermal radiation is a main heat transfer mechanism. Because the tension mask has numerous slits, the effective thermal conductivity and effective and effective elastic modulus is calculated, and the tension mask is modeled as a shell without slits. From the displacement results of tension mask, electron beam landing shifts is calculated directly. Experiments are performed to confirm our analysis results. Temperature distributions and beam landing shifts of tension mask are measured and the results are in good agreement with those of analyses.

  • PDF

Effect of Wrinkling on Failure Behavior of Thin Membranes (얇은 막재에서 주름이 파괴거동에 미치는 영향)

  • Kim, Young-Ah;Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1005-1012
    • /
    • 2011
  • In this paper, the effect of wrinkling on the failure behavior of thin membrane was studied using geometrically nonlinear shell element post-buckling analysis with global-local analysis strategy. In the analysis, double-edge notched and single-edge notched tensile specimen configurations were considered. The analyses were performed for both cases with allowing and suppressing the wrinkling deformation. The results were investigated focusing on the effect of wrinkle development on the variation of J-integral values at the cut tip. The effect of cut lengths and the specimen lengths were also systematically studied.

Behavior of trabecular bone considered by fluid phase and strain rate (유체상과 변형율속도를 고려한 해면골의 거동해석)

  • 민성기;홍정화;문무성;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1078-1080
    • /
    • 2002
  • The pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid and the biomechanical interactions between fluid and solid constituents within bone, poroelastic theory was applied. The purpose of this study is to describe the behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow by using a commercial finite element analysis program based on the poroelasticity. In this study, the model was numerically tested for 5 different strain rates, i. e., 0.001, 0.01, 0.1, 1.0, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic response, the drained and undrained deformation, were predicted. From the predicted results for the simulated five strain rate, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, other wise it showed a nonlinear the strain rate Increased. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a porous material and its strain rate dependent material behavior could be predicted.

  • PDF