• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.027 seconds

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

The Effects of Composite Laminate Layups on Nonlinear Buckling Behavior Using a Degenerated Shell Element (퇴화 쉘 요소를 사용한 적층복합재의 증분형 비선형 좌굴 현상 및 적층 레이업 효과)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.50-60
    • /
    • 2016
  • Laminate composites have a number of excellent characteristics in aspects of strength, stiffness, bending, and buckling. Buckling and postbuckling analysis of laminate composites with layups of [90/0]2s, $[{\pm}45/90/0]s$, $[{\pm}45]2s$ has been carried using the Total Lagrangian nonlinear Newton-Raphson method. The formulation of a geometrically nonlinear composite shell element based on a nonlinear large deformation method is presented. The used element is an eight-node degenerated shell element with six degrees of freedom. Square, circular cylinder, and arch panel laminate geometries were analyzed to verify the effects of the layups on the buckling and postbuckling behavior. The results showed that the effects of laminate layups on bucking and postbuckling behavior and the present formulation showed very good agreement with existing references.

Nonlinear Dynamic Analysis of Gear Driving System due to Transmission Error and Backlash (전달오차와 백래쉬에 의한 기어 구동계의 비선형 동특성 해석)

  • 최연선;이봉현;신용호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.69-78
    • /
    • 1997
  • Main sources of the vibration in gear driving system are transmission error and backlash. Transmission error is the difference of the rotation between driving and driven gear due to tooth deformation and profile error. Vibro-impacts induced by backlash between meshing gears lead to excessive vibration and noise in many geared rotation systems. Nonlinear dynamic characteristics of the gear driving system due to transmi- ssion error and backlash are investigated. Transmission error is calculated for spur gear. Nonlinear equation of motion for the gear driving system is developed with the calculated transmission error and backlash. Numerical analysis of the equation and the experimental results show the existence of meshing frequency, superharmonic compon- ents. Instability of the gear driving motion is found on the basis of Mathieu equation. Rattle vibration due to backlash is also discussed on the basis if nonlinear jump phenomenon.

  • PDF

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations

  • Gorgun, H.;Yilmaz, S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.539-569
    • /
    • 2012
  • The behaviour of beam-to-column connections plays an important role in the analysis and design of steel structures. A computer-based method is presented for nonlinear steel frames with semi-rigid connections accounting for shear deformations. The analytical procedure employs transcendental stability functions to model the effect of axial force on the stiffness of members. The member stiffness matrix, and the fixed end forces for various loads were found. The nonlinear analysis method is applied for three planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

Nonlinear finite element analysis of circular concrete-filled steel tube structures

  • Xu, Tengfei;Xiang, Tianyu;Zhao, Renda;Zhan, Yulin
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.315-333
    • /
    • 2010
  • The structural behaviors of circular concrete filled steel tube (CFT) structures are investigated by nonlinear finite element method. An efficient three-dimensional (3D) degenerated beam element is adopted. Based on those previous studies, a modified stress-strain relationship for confined concrete which introduces the influence of eccentricity on confining stress is presented. Updated Lagrange formulation is used to consider the geometrical nonlinearity induced by large deformation effect. The nonlinear behaviors of CFT structures are investigated, and the accuracy of the proposed constitutive model for confined concrete is mainly concerned. The results demonstrate that the confining effect in CFT elements subjected to combining action of axial force and bending moment is far sophisticated than that in axial loaded columns, and an appropriate evaluation about this effect may be important for nonlinear numerical simulation of CFT structures.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.