• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.057 seconds

A Fundamental Study on the Welding Deformation of Plate by Using F.E.M. (유한요소법에 의한 평판의 용접 변형에 관한 기초적 연구)

  • 방한서;고민성;방희선
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • When structures are constructed by welding, heat conduction brings welding deformation. This is accompanied by complicated mechanical phenomenon such as material nonlinear and geometric nonlinear behavior. Hitherto, the research of welding deformation has been accomplished by an analytical method and experimental data in Korea. In this paper, the computer program by F.E.M.(finite element method) which could analyze the deformation of thin plate considering phenomena(both material and geometric nonlinear behavior) has been developed and verified. The production mechanism and characteristics in the welding deformation of plate are studied by the results.

  • PDF

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates (복합재료 평판의 비선형 3차원 저속 충격 해석)

  • 김승조;지국현
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness

  • Eipakchi, Hamidreza;Nasrekani, Farid Mahboubi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.241-256
    • /
    • 2022
  • In this article, an analytical procedure is presented for static analysis of composite cylinders with the geometrically nonlinear behavior, and non-uniform thickness profiles under different loading conditions by considering moderately large deformation. The composite cylinder includes two inner and outer isotropic layers and one honeycomb core layer with adjustable Poisson's ratio. The Mirsky-Herman theory in conjunction with the von-Karman nonlinear theory is employed to extract the governing equations which are a system of nonlinear differential equations with variable coefficients. The governing equations are solved analytically using the matched asymptotic expansion (MAE) method of the perturbation technique and the effects of moderately large deformations are studied. The presented method obtains the results with fast convergence and high accuracy even in the regions near the boundaries. Highlights: • An analytical procedure based on the matched asymptotic expansion method is proposed for the static nonlinear analysis of composite cylindrical shells with a honeycomb core layer and non-uniform thickness. • The effect of moderately large deformation has been considered in the kinematic relations by assuming the nonlinear von Karman theory. • By conducting a parametric study, the effect of the honeycomb structure on the results is studied. • By adjusting the Poisson ratio, the effect of auxetic behavior on the nonlinear results is investigated.

A theoretical mapping model for bridge deformation and rail geometric irregularity considering interlayer nonlinear stiffness

  • Leixin, Nie;Lizhong, Jiang;Yulin, Feng;Wangbao, Zhou;Xiang, Xiao
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.93-105
    • /
    • 2023
  • This paper examines a high-speed railway CRTS-II ballastless track-bridge system. Using the stationary potential energy theory, the mapping analytical solution between the bridge deformation and the rail vertical geometric irregularity was derived. A theoretical model (TM) considering the nonlinear stiffness of interlayer components was also proposed. By comparing with finite element model results and the measured field data, the accuracy of the TM was verified. Based on the TM, the effect of bridge deformation amplitude, girder end cantilever length, and interlayer nonlinear stiffness (fastener, cement asphalt mortar layer (CA mortar layer), extruded sheet, etc.) on the rail vertical geometric irregularity were analyzed. Results show that the rail vertical deformation extremum increases with increasing bridge deformation amplitude. The girder end cantilever length has a certain influence on the rail vertical geometric irregularity. The fastener and CA mortar layer have basically the same influence on the rail deformation amplitude. The extruded sheet and shear groove influence the rail geometric irregularity significantly, and the influence is basically the same. The influence of the shear rebar and lateral block on the rail vertical geometric irregularity could be negligible.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Modeling the cumulative residual deformation of high-speed railway bridge pier subjected to multiple earthquakes

  • Gou, Hongye;Leng, Dan;Yang, Longcheng;Jia, Hongyu
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.317-327
    • /
    • 2019
  • High-speed railway bridge piers in seismically active area may be subjected to multiple earthquakes and then produce cumulative residual deformation. To study the cumulative residual deformation of high-speed railway bridge piers under multiple earthquakes, a nonlinear numerical analytical model with multi-DOF (MDOF) system is presented and validated against two shaking table tests in this paper. Based on the presented model, a simple supported beam bridge pier model of high-speed railway is established and used to investigate the cumulative residual deformation of high-speed railway bridge pier under mainshock-aftershock sequences and swarm type seismic sequences. The results show that the cumulative residual deformation of the bridge pier increases with earthquake number, and the increasing rates are different under different earthquake number. The residual deformation of bridge pier subjected to multiple earthquakes is accumulated and may exceed the limit of code.

Nonlinear Modeling and Dynamic Analysis of Flexible Structures Undergoing Overall Motions Employing Mode Approximation Method

  • Kim, Jung-Young;Hyun, Sang-Hak;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.896-901
    • /
    • 2002
  • This paper presents a nonlinear modeling method for dynamic analysis of flexible structures undergoing overall motions that employs the mode approximation method. This method, different from the naive nonlinear method that approximates only Cartesian deformation variables, approximates not only deformation variables but also strain variables. Geometric constraint relations between the strain variables and the deformation variables are introduced and incorporated into the formulation. Two numerical examples are solved and the reliability and the accuracy of the proposed formulation are examined through the numerical study.