• Title/Summary/Keyword: nonlinear coupling

Search Result 356, Processing Time 0.032 seconds

Experimental Study of Spatial and Temporal Dynamics in Double Phase Conjugation

  • Kwak, Keum-Cheol;Yu, Yong-Hun;Lim, Tong-Kun;Lee, Dae-Eun;Son, Jung-Young
    • Journal of the Optical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-46
    • /
    • 1999
  • Spatial and temporal dynamics arising in a photorefractive crystal(BaTiO3) during the process of double phase conjugation was studied experimentally. We studied the dynamical effects caused by the buildup of the diffraction grating and turn on of phase conjugated beams, as well as the spatial effects caused by the finite transverse coupling of beams and the propagation direction of beams. We observed conical emission in DPCM. We believe that various temporal and spatial instabilities are due to movement of the nonlinear grating. For a real beam coupling and constructive interaction of interference fringes in the crystal, we observed steady, periodic, irregular temporal behavior. And, by the calculation of the correlation index, we found that the spatial correlation decreased as the transverse interaction region was increased.

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator (유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소)

  • Lee Jin-Ho;Rhim Sung-Soo;Lee Soon-Geul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF

Cyclotron Resonance of the Wannier-Landau Transition System Based on the Ensemble Projection Technique

  • Jung-Il Park
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.27 no.4
    • /
    • pp.28-34
    • /
    • 2023
  • We study the linear-nonlinear quantum transport theory of Wannier-Landau transition system in the confinement of electrons by a square well confinement potential. We use the projected Liouville equation method with the ensemble density projection technique. We select the dynamic value under a linearly oscillatory external field. We derive the dynamic value formula and the memory factor functions in three electron phonon coupling systems and electron impurity coupling systems of two transition types, the intra-band transitions and inter-band transitions. We obtain results that can be applied directly to numerical analyses. For simple example of application, we analyze the absorption power and line-widths of ZnO, through the numerical calculation of the theoretical result in the Landau system.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

Investigation of a Method for RF Circuits Analysis Based on Electromagnetic Topology

  • Park, Yoon-Mi;Chung, Young-Seek;Cheon, Chang-Yul;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.396-400
    • /
    • 2009
  • In this paper, electromagnetic topology (EMT) was used to analyze the electromagnetic compatibility (EMC) of RF circuits including passive and active components. It is difficult to obtain usable results for problems relating to electromagnetic coupling in complex systems when using conventional numerical or experimental methods. Thus it is necessary to find a new methodology for analyzing EMC problems in complicated electromagnetic environments. In order to consider the nonlinear characteristics of active components, a SPICE diode model was used. A power detector circuit and the receiver circuit of a radio control (RC) car were analyzed and experimented in order to verify the validity of this method.

An Experiment Study on the Chaos Phenomenon for a Rectangular Cantilever Beam (직사각형 외팔보의 혼돈현상에 대한 실험)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.567-571
    • /
    • 2005
  • The slender rectangular cantilever beam has vef interesting to study dynamic behaviors of the harmonic base excitation of a cantilever beam shows many nonlinear dynamics due to unstability , energy transfer and mode coupling. Nonlinear phenomenon shows superharmonic, subharmonic, super subharmonic and chaotic motions of the cantilever beam. Experimental observation and verification of these phenomenon carry much importance for the theoretical study as well as in it self. In the experimental cantilever beam, the chaotic motions of the beam appear as a pink noise signal in FFT analysis and as a torus structure in the oscilloscope analyzed to eventually give information of chaotic motions of the cantilever beam.

  • PDF

Nonlinear Aeroelastic Simulation of a Full-Span Aircraft with Oscillating Control Surfaces (항공기의 조종면 진동시 비선형 공탄성 시뮬레이션)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Paek, Seung-Kil;Kim, Young-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.81-87
    • /
    • 2002
  • In this paper, the transonic aeroelastic behavior of the generic fighter model is investigated in the time domain. The simulation of flutter flight test using forced harmonic motion of control surfaces including inertial coupling effects is conducted at the various conditions. The nonlinear aerodynamic effects are considered using a transonic small disturbance equation. A modal model obtained by a free vibration analysis is used for the structural model. The relations between the computed flutter boundary and the simulation results of the responses using the harmonic motions of control surfaces at various conditions are investigated.

A Study on the Harmonics Effect of SVC in Electric Arc Furnace Loads

  • Kim, Kyung-Chul;Jin, Seong-Eun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.54-60
    • /
    • 2006
  • Large steel industries have time-varying nonlinear loads such as electric arc furnaces. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. The main objective of the static var compensator is to maintain the rms voltage at the point of common coupling within the limit. In this research, harmonic mitigation studies were conducted with and without the SVC, and time-varying harmonics were evaluated according to the international harmonic standards (IEC 61000-3-6 and IEEE Std. 519) using a cumulative probabilistic approach.

Identification of optimum sites for power system controller using normal forms of vector field (Normal form을 이용한 제어기 설치 위치 선정방법)

  • Lee, In-Soo;Jang, Gil-Soo;Kwon, Sae-Hyuk;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.39-42
    • /
    • 2000
  • In stressed power system, due to the presence of increased nonlinearity and the existence of nonlinear modal interactions, there exist some limitations to the use of conventional linear system theory to identify the optimum sites for controller. This paper proposes an approach to identify the optimum sites for controller using the method of normal forms. In this paper nonlinear participation factor and coupling factor are proposed as a measures of identification of optimum sites for controller and a selection procedure is also proposed. The proposed procedure is applied to the 10-generator New England System and the KEPCO System in the year of 2010 to illustrate its capabilities.

  • PDF