• Title/Summary/Keyword: nonlinear controller

Search Result 2,177, Processing Time 0.037 seconds

A Study on Optimal Pressure Control of Hydraulic Nozzle for Vaccum Foam System of Refrigerator in the 900L Class (900L 냉장고 진공발포시스템 유압노즐의 최적 압력제어에 관한 연구)

  • Jo, Sang-Young;Kim, Min-Seong;Koo, Yeong-Mok;Yang, Jun-Suk;Shin, Haeng-Bong;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.50-61
    • /
    • 2016
  • This study proposes a new approach to control the nozzle pressure of homogenizer in refrigerator foam system in the 900L class. Generally, dynamic characteristics of the hydraulic nozzle system is highly nonlinear due to uncertain parameters, and it is very difficult to control of hydraulic dynamics. Firstly, it has been performed to derive a real-time control algorithm based on the mathematical model of hydraulic cylinder, and to estimate the values of the unknown parameter in the hydraulic system. Secondly, the feedback controller was designed to implement the optimal pressure control of the hydraulic nozzle system. Finally the control performance was illustrated by simulation.

A Study on the Development of Robust control Algorithm for Stable Robot Locomotion (안정된 로봇걸음걸이를 위한 견실한 제어알고리즘 개발에 관한 연구)

  • Hwang, Won-Jun;Yoon, Dae-Sik;Koo, Young-Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.259-266
    • /
    • 2015
  • This study presents new scheme for various walking pattern of biped robot under the limitted enviroments. We show that the neural network is significantly more attractive intelligent controller design than previous traditional forms of control systems. A multilayer backpropagation neural network identification is simulated to obtain a learning control solution of biped robot. Once the neural network has learned, the other neural network control is designed for various trajectory tracking control with same learning-base. The main advantage of our scheme is that we do not require any knowledge about the system dynamic and nonlinear characteristic, and can therefore treat the robot as a black box. It is also shown that the neural network is a powerful control theory for various trajectory tracking control of biped robot with same learning-vase. That is, we do net change the control parameter for various trajectory tracking control. Simulation and experimental result show that the neural network is practically feasible and realizable for iterative learning control of biped robot.

A Study on Stability Improvement of Fuel Metering Unit for Air Breathing Engine (공기흡입식 추진기관용 연료조절밸브 시스템 안정성 향상에 관한 연구)

  • 이도윤;박종승;최현영;구자용
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.76-81
    • /
    • 2006
  • This paper deals with a fuel metering unit (referred to as FMU) for air breathing engine. The proposed FMU consists of a constant pressure drop valve and a metering valve, both of which are controlled by servovalve. Linear analysis derived from a nonlinear mathematical model of FMU is carried out to find major parameters on the system performance. Numerical results using established model of FMU were in good agreement with the experimental results. It is also shown that the system stability is improved by reducing the constant pressure drop at metering valve and applying the triangular orifice to constant-pressure-drop valve through the simulation and experiments.

A study on sliding surface design

  • Zhang, Yifan.;Lee, Sanghyuk
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.2
    • /
    • pp.25-31
    • /
    • 2014
  • Sliding mode design and analysis for nonlinear system was carried out. A designer will determine the parameters to know about the performance and robustness of the system dynamics. To investigate the characteristics of sliding mode control, an inverted pendulum model is applied by the sliding mode control and the state concerned is output. Comparison is made by evaluating different initial conditions, sliding numerical components for sliding surface, and input gain, the dynamic of output will be investigated to conclude the generality. Control approaches have their limitations and sliding mode control is no exception. The chattering problem is its main negative effect to overcome. This effect is displayed and in this project chattering problem is suppressed by a modified discontinuous controller.

  • PDF

Fuzzy Variable Structure Control of Wheel-Driven Inverted Pendulum (바퀴구동 도립진자에 대한 퍼지 가변구조제어)

  • Yoo Byung-Kook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • This paper suggests a fuzzy variable structure control scheme for Takagi-Sugeno(T-S) fuzzy model and presents the attitude control of the wheel-driven inverted pendulum(WDIP) based on the proposed control algorithm. The proposed controller is designed based on the T-S fuzzy modeling of nonlinear system and the unification of gain matrices in linear subsystems that constitute the overall fuzzy model. The uncertainties generated in the gain matrix unifying procedure can be interpreted as the input disturbances of the conventional variable structure control. These unifying disturbances can be resolved by using the robustness property of the conventional variable structure system. Design example for wheel-driven inverted pendulum demonstrates the utility and validity of the proposed control scheme.

  • PDF

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability (적응 확률을 갖는 유전자 알고리즘을 사용한 퍼지규칙의 최적화)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.43-51
    • /
    • 1996
  • Fuzzy rules in fuzzy logic control play a major role in deciding the control dynamics of a fuzzy logic controller. Thus, control performance is mainly determined by the quality of fuzzy rules. This paper introduces an optimization method for fuzzy rules using GAS with adaptive probabilies of crossover and mutation. Also we design two fitness measures to satisfy control objectives by partitioning the response of a plant into two parts. An initial population is generated by an automatic fuzzy rule generation method instead of random selection for fast a.pproaching to the final solution. We employed a nonlinear plant to simulate our method. It is shown through simulation that our method is reasonable and can be useful for optimizing fuzzy rules.

  • PDF

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

Optimal Posture Control for Unmanned Bicycle (무인자전거 최적자세제어)

  • Yang, Ji-Hyuk;Lee, Sang-Yong;Kim, Seuk-Yun;Lee, Young-Sam;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.1006-1013
    • /
    • 2011
  • In this paper, we propose an optimal posture control law for an unmanned bicycle by deriving linear bicycle model from fully nonlinear differential equations. We calculate each equilibrium point of a bicycle under any given turning radius and angular speed of rear wheel. There is only one equilibrium point when a bicycle goes straight, while there are a lot of equilibrium points in case of turning. We present an optimal equilibrium point which makes the leaning input minimum when a bicycle is turning. As human riders give rolling torque by moving center of gravity of a body, many previous studies use a movable mass to move center of gravity like humans do. Instead we propose a propeller as a new leaning input which generates rolling torque. The propeller thrust input makes bicycle model simpler and removes input magnitude constraint unlike a movable mass. The proposed controller can hold optimal equilibrium points using both steering input and leaning input. The simulation results on linear control for circular motion are demonstrated to show the validity of the proposed approach.

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • Kim, Moon-Hwan;Park, Jin-Bae;Lee, Ho-Jae;Cha, Dae-Bum;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.80-84
    • /
    • 2002
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (TS) fuzzy system using the rigorous tool-Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.