Fuzzy Rule Optimization Using Genetic Algorithms
with Adaptive Probability

A% 48 2 #04 ELAEE 44D

2172 2] 245

Sung Hoon Jung*
3 4 &

ABSTRACT

Fuzzy rules in fuzzy logic control play a major role in deciding the control dynamics of a fuzzy logic controller.
Thus, control performance is mainly determined by the quality of fuzzy rules. This paper introduces an
optimization method for fuzzy rules using GAs with adaptive probabilies of crossover and mutation. Also we de-
sign two fitness measures to satisfy control objectives by partitioning the response of a plant into two parts.

An initial population is generated by an automatic fuzzy rule generation method instead of random selection for
fast approaching to the final solution. We employed a nonlinear plant to simulate our method. It is shown through

simulation that our method is reasonable and can be useful for optimizing fuzzy rules.
e %

A Aol A HAFA L HAAo]7] o] AL HEed F8E L W 2YA, AT F2 T
A A9 Ao oSN AFE B =EoA el Zak Q)Y #Eo] H Ao WstHe KAA ¢
2HEE AHES HATFAE HH 3 gte WYL Ve

E# B =R fEle EHESY $HE T FR2E Uro] Ao BAE BEI e Y= FF W
A& Atgich Fd wE A A7 A fele 2719 HAFHLE FAAF F3 L AHEEA B2 AE
o2 AAA & AYshe THE AHSEte 27]) HAFALE AHEAY. o] ¥A B HAFH] FL& AUA
& BAF7) A8 N EWEE 0|85t AEd ol HEg AEdolA A3 29 Mol faFo|n
F88 Aol ¥

I. Introduction Fuzzy logic control (FLC) methods have been
widely employed to control highly nonlinear plants
from the late 1980s [1, 2, 3]. In fuzzy logic control

(FLC), fuzzy rules play a major role for deciding the

*School of Information and Computer Engineering, Hansung
Univ.

QPR A control performance of FLC is mainly determined by

control dynamics of a fuzzy logic controller [1]. Thus,

43

FFHA 2 AF AL =E2] 1996 Vol 6, No. 2.

the quality of fuzzy rules 4, 5].

Fuzzy rules have been mainly developed by human
experts so far because membership functions in fuzzy
logic represents linguistic terms. Recently, self organ-
izing fuzzy control methodologies that fuse the fuzzy
logic control and the neural network theory have
been introduced [4, 5, 6, 7]. Such methodologies,
however, do not guarantee good control performance
although they provide self organizing methods for
fuzzy logic controllers.

To increase the control performance, this paper pro-
poses an optimization method for fuzzy rules using
genetic algorithms (GAs). Initial population in which
a chromosome represents a fuzzy rule set can be ran-
domly selected. In this paper, however, we used an
automatic fuzzy rule generation method [8, 9] for fast
approaching to the final solution. In our method, the
probabilities of crossover and mutation are adaptively
changed to focus on the final solution. Fitness of each
chromosome (i. e., each fuzzy rule set) is directly cal-
culated from simulation of fuzzy logic control with a
controlied plant.

To weight the importance of the responses of the
plant, the fitness calculation is classified into transient
response fitness and steady-state response fitness. A con-
troller designer can select an appropriate weight value
according to the control requirements.

We simulated our method with a highly nonlinear
plant. It is shown through simulation that the control
performance of a fuzzy logic controller with opti-
mized fuzzy rules is considerably better than that of a
fuzzy logic controller with initial fuzzy rules even
when the control performance with initial fuzzy rules
are very poor.

This paper is organized as follows.

Section 2 briefly describes an automatic fuzzy rule
generation method and simple genetic algorithms. The
fuzzy rule optimization method is provided in section
3. Section 4 shows the simulation results. Conclusion

is given in section 5.

44

II. Brief Review: Genetic Algorithms

Fuzzy rules to be optimized can be obtained by
random initialization. In this case, however, the popu-
lation is converged slowly because the fitness of genes
have low values. It has also been known that initial
population affects the quality of the final solution.
Thus, an automatic fuzzy rule generation algorithm
introduced in [8, 9] is employed to provide a GA with
an initial population. More information about AFRG
can be found in [8, 9]. GAs are adaptive methods for
solving search and optimization problems [10, 11, 12,
13, 14]. They are based on the genetic processes of
biological organisms.

Natural populations evolve through natural selec-
tion and survival of the fittest over many generations.
GAs simulate those processes in natural populations
which are essential to evolution. It has been shown
that these GAs can well be applied to real world pro-
blems if they have been suitably encoded. The combi-
nation of good characteristics from different ancestors
can sometimes produce a superfit offspring, whose fit-
ness is greater than that of either parent. In this way,
species evolve to become more and more well suited
to their environment.

The power of GAs comes from the fact that the
technique is robust, and that it can deal successfully
with a wide range of problem areas, including those
which are difficult for other methods to solve. GAs
are not guaranteed to find the global optimum solut-
ions to a problem, but they are generally good at
finding acceptably good solutions to problems accept-
ably quickly.

Algorithm 1 shows the structure of a simple genetic

algorithm.

Algorithm 1. Simple Genetic Algorithm
// t:time //
// P:populations //
1.t <0
2. initialize P(f)

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability

3. evaluate P(f)

4. while (not termination-condition)

5. do

6. tet+1

7. select P(2) from P(t—1)
3. recombine P(¢)

9. evaluate P()

10. end

Before a GA can be applied to a problem, the prob-
lem must be coded. Then, a specific number of initial
populations are generated according to the coding
method. These coded genes are evaluated to measure
the fitness of the solutions. To make the next gener-
ation, selection and recombination are necessary. This
procedure does not stop before a satisfiable solution
is obtained. More detailed descriptions about GAs
are available in [10. 11].

. Fuzzy Rule Optimization

Even if the AFRG algorithm generates relatively
good fuzzy rules, it is not guaranteed that generated
rules have good enough quality to be used in real ap-
plications without any modification. Also even if the
quality of the generated fuzzy rules are good their
optimization is necessary if they can be more opti-
mized. Combining these two methodologies enables a
fuzzy logic controller to be equipped with the ability
of self fuzzy rule generation without any intervention
of human experts. We use GAs to optimize fuzzy
rules. Original GAs have two problems.

First, after a population converges to the globally
optimal solution, constant probabilities of crossover
and mutation cause the disruption of the near-opti-
mal solutions. Second, search space of a population
remains large even if it approaches the globally opti-
mal solution. These make GAs inefficient.

In this paper, we employed modified GAs to solve
these two problems. Before a GA can be run, a suit-

able coding (or representation) for the problem must

45

be devised. We also require a fitness function, which
assigns a figure of merit to each coded solution. Dur-
ing the run, parents must be selected for reproduction
and recombined for generating of offspring. It is as-
sumed that the shapes of membership functions are
predetermined.

Under this assumption, we coded a fuzzy rule set
using the order of rule table. That is, output linguistic
terms are ordered to convert a bit string chromosome
according to a predefined order. Each linguistic term

is represented by a bit string as shown in Table I.

Table I. Coding of Fuzzy Linguistic Values

Values | NB I[NM | NS | ZO | PS [PM | PB | NULL

Coding | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

An unnecessary rule set is deleted through iteration
by employing a don’t care conditioned fuzzy label,
NULL in the rule set. That is, if all of the fuzzy
labels of output membership functions are composed
of nulls then this rule set is deleted in the next iter-
ation step.

Figure 1 shows a chromosome of a fuzzy rule set.

T e == == === ==~ [

Fig. 1 A chromosome of a fuzzy rule set

The coded bit strings are used as chromosomes in
GA and the optimal bit string corresponding to opti-
mal rule set is searched through the fitness value. A
fitness value of each chromosome decided by a fitness
function is very important in GAs because this value
represents the quality of solution of a chromosome.
The fitness function returns a single numberical fir-
ness or figure of merit, which is supposed to be pro-
portional to the wtility or ability of the individual
which that chromosome represents.

In our problem, the fitness value indicates how

FAHA R A F A2 53] =8 A 1996 Vol. 6, No. 2.

much current fuzzy rules are adequate to control a
plant. During the search process using our GA, a
selected string is decoded into a rule set and this rule
set is applied to the plant. The result of fuzzy logic
control using the decoded rule set is employed as a
fitness measure. That is, the inverse value of the total
sum square error (TSSE) derived from the results of

1
tsse;

the control is taken as a fitness value, i. €., f;=

We call this measure simulation-based fitness me-
asure.

The highly fit individuals in a population have high
opportunities to reproduce. As a result, new individu-
als, the offspring, are produced. Offspring shares
some features taken from each parent. The least fit
individuals in the population have low probability of
being selected for reproduction;and they finally die
out. A whole new population of possible solutions is
thus produced by selecting the best individuals from
the current generation and mating them to produce a
new set of individuals. This new generation contains a
higher proportion of the characteristics possessed by
the good individuals of the previous generation.

In this way, over many generations, good charac-

teristics are spread throughout the population, being

A
T T == e o

SCBRRNRCARERCOEEEENAREEE R AGROEED

y

oo =

bbbhhbbﬁlhhbkbhﬁk--4ﬂﬂﬂ%ﬂﬂp:4ﬂddﬂﬂﬂ4

i : crossover point

Fig. 2 Crossover of two chromosomes

46

mixed and exchanged with other good characteristics
as they go. By favoring the mating of the more fit
individuals, the most promising areas of the search
space are explored. Having selected two parents, their
chromosomes are recombined, typically using the
mechanisms of crossover and mutation.

Crossover takes two individuals and cuts their
chromosome strings at some randomly chosen pos-
ition to produce two head segments and two tail
segments. The tail segments are then swapped over to
produce two new full length chromosomes. Figure 2
shows two points of crossover.

The two offsprings each inherit some genes from
each parent. Crossover is not usually applied to all
pairs of individuals selecied for mating. A random
choice is made, whether the likelihood of crossover
being applied is typically between 0.6 and 1.0. If cros-
sover is not applied, offspring are produced simply by
duplicating the parents. This gives each individual a
chance of passing on its genes without the disruption
of crossover. Mutation is applied to each child indi-
vidually after crossover. It randomly alters each
chromosome with a small probability typically 0.001.

Figure 3 shows the six points mutation.

y y

o= L T

L

vy ¥
(ofs]a]]sJelelafafs[effofof

.

6 1 mutation point
Fig. 3 Mutation of two chromosomes

This reproduction procedure is repeated until the
given performance objective is achieved. In our
method, the probabilities of crossover and mutation

are large initially; for example, p. and p, are 1.0 and

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability

0.05, respectively. The values of probabilities are
dynamically varied in proportion to the ratio between
the initial maximum value fitness and the current

maximum fitness value.

Definition 1: Adaptive p. and p,,

Let the initial maximum fitness value and the cur-

c
max »

rent maximum fitness value be f'_ and f re-
spectively, and the initial probabilities of crossover
and mutation be p! and p., respectively, then the
adaptive probabilities of crossover and mutation are
given as:

be=pox =

b= P X =

This adaptive probability strategy provides a GA
with the focusing mechanism on the final solution.
With this strategy, the disruption in the near-optimal
solutions is considerably reduced. This strategy does
not make the GA fall into a local minimum because
it broadly searches the whole solution space initially
with high probabilities of crossover and mutation.

In our method, the fitness of each chromosome (i.
e., each fuzzy rule set) is directly calculated from
simulation of fuzzy logic control with a controlled
plant. That is, the inverse of the total sum square er-
ror (TSSE) between set points and plant’s responses is
used as a measure of fitness of a chromosome.

To weigh the importance of the responses of the
plant, the fitness calculation is classified into transient

response fitness and steady-state response fitness.

1 1 .
fi= = ‘transient response fitness
tese; M !
y epXer 2
= W
1 1 .
= = :steady state response fitness
tsse; o 5
Y erxe

47

where 7 is the i’th chromosome, % is the number of
control steps, and M is the maximum control step. In
the equations, e is the error between the reference
value and a current value of the plant output when
the simulation step is £ and W is a constant weight
value in real domain.

A controller designer can select an appropriate
weight value according to the control requirements.
For example, if a control designer wants to obtain
fuzzy rules that show good control performance in
the transient response, then he sets the W to be
greater than one.

Otherwise, he sets ' to be less than one. In the cal-
culation of fitness, set points that are applied to the
controlled plant are randomly selected from —1.0 to
1.0 with uniform distribution.

An initial population is generated by an automatic
fuzzy rule generation method instead of random selec-
tion for fast approaching to the final solution. Algor-
ithm 2 shows the steps of the simulation-based fitness

measure.

Algorithm 2. Fitness measure
{ evaluating population}
1. decode each chromosome into a fuzzy rule set
2. simulate fuzzy logic control with the fuzzy rule set
3. obtain the total sum square error value(ssse;)
4.

set the inverse value of tsse; to the fitness value

)

of the chromosome (. e., f;=
1sse;

With the fitness measure, our fuzzy rule optimizat-

ion algorithm operates as shown in Algorithm 3.

Algorithm 3. Optimized Fuzzy Rule Generation
// N:the size of population //
// M :the number of not evolved iteration //
1. for i=0 to N —1 {initialize population}
2. generate an initial fuzzy rule set by AFRG
3. encode the fuzzy rule set into a chromosome
4. end for

FFHA Y A A2y =82 1996 Vol. 6, No. 2.

5. fitness measure of all chromosomes
6. while NOT termination condition do

if adaptive probability mode then

8. D,=I)CX?::"L
Lo

max

9. Pm=

10. end if

11. crossover operation

12. mutation operation

13. fitness measure of all chromosomes
14. find the maximum fitness value

15. if NOT evolved during M then

16. terminate

17. end if

18. end while

Figure 4 shows the overall simulation setup for

optimization of fuzzy rules.

e
'

G A | ritsess

| Measure
'
'

AFRG

Plant

Fig. 4 Overall simulation setup (AFRG : Automatic Fuzzy
Rule Generation)

Initial population is generated by AFRG and en-
coder. With the initial population, the GA works with

a simulated fuzzy logic controller for fitness measure.

48

IV. Simulation Results

A very nonlinear plant is applied to our control
system to show the performance of our method. The
nonlinear plant is given by a difference equation form

as follows.

y(k)

m (k) +u(k)

plant : y(k +1)=

The number of the control length for one time
series and the number of set points for gathering stat-
istics are set to 100, respectively. Mamdani’s inference
method and LGM (Level Grading Method) defuzz-
ification method [15] are used to control the plant.
Asymmetric several linguistic terms, NB, NS, NZ, ZO,
PZ, PS, PB, are employed as shown in Figure 5.

\ipha Qut

wzzy Output (vat:0.073396)

Fig. 5 Membership functions

First, we shows a result that is generated from a
GA with constant probabilities of crossover and mu-
tation. Figure 6 shows the result. As you can see, the
result is considerably poor. Especially, the steady
state error is very large.

Figure 7 shows two simulation results generated

from a GA with adaptive probabilities of crossover

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability

¥

in§ mamdani.mam3d (Comparison of twa resulta)
, T v

™

St Points ~—
Control by Generated Aules -

!

\

H

I

\
| Control by Optimuzed Rutes
1

N
3
g}

Tina Step

Fig. 6 Result of constant probability

inS_mamdani.mem3 (Comparisan of Iwo resulty)
\: T

(\\ ! f\\.f\

P

05 +

114

Fig. 7 (a) normal fitness (b) weighted fitness

49

and mutation. In the simulations, the GA is finished
only when the fitness is not optimized further. The
average generations for the GA to finish are about
from 40 to 60.

In the result figures, normal fitness is not to take
the weight value, W, and weighted fitness is to take
the weight value within transient response in calcu-
lation fitness. Figure 8 shows another result using
weighted fitness measure. In this case, although the
performance under the generated rules is very poor,
the optimized rules show a relatively good perform-
ance. This indicates that the optimization technology

with genetic algorithm is considerably useful.

inS1.mamdani.mem3 (Companson of two results)
" T

osp St Poirls ——
q Control by Generated Rules

Control by Optimized Rules - -~

g of]
05 F 4
ak 1
° 20 [100
Time Slep
Fig. 8 Weighted fitness
Adaplive GA
1 T T T T T -
" CrOBSover ---+
ool ™ muation - |
g ITISEAN J
H o7} 4
§ o8} Tl)
S oesk T 4
é 04 b o ‘ E
& osl]
il .
(%} r 1
. e e
0 -1 2 3 4 s [7
Ganerations

Fig. 9 Adaptive probabilities of crossover and mutation

FFHA % A A2 =82 1996 Vol. 6, No. 2.

Figure 9 shows the variation of probabilities in ad-
aptive GA.

As shown in the result figures, initial fuzzy rules
are optimized by GAs to some degree. Adaptive GA
shows a generally better performance, but not always
because GA operators are not guaranteed that offspr-
ings are always better than parents. Similarly, the
weighted fitness measure shows better results in the
steady state, but not always. The adaptive GA does
not perturbate near the final solution because the
probabilities of crossover and mutation are low. This
adaptive methodology prevents a GA from diverging
near the final solution. In the case that the final sol-
ution falls into a local optima, however, this property
also may provide a disadvantage. Though this can
give the disadvantages, it will not often occur because

our algorithm searches broadly initially.

V. Conclusions

This paper introduced an optimization method-
ology using a GA with adaptive probabilities of cros-
sover and mutation. To provide a GA with a good
initial population, the AFRG method is employed.
We describe two methods for fitness measure. Simu-
lation results show this optimization method for fuzzy
rules is useful in the practical automatic fuzzy rule

generation.

References

1. C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy
Logic Controller-Part 1/11,” IEEE Trans. on Sys-
tems, Man and Cybernetics, vol. 20, pp. 404-435,
MARCH/APRIL 1990.

2. H. Hellendoorn and C. Thomas, “Defuzzification
in Fuzzy Controllers,” Journal of Intelligent and
Fuzzy Systems, vol. 1, pp. 109-123, 1993.

3. W. Pedrycz, Fuzzy Control and Fuzzy Systems. Re-
search Studies Press, 1989.

4. J.-S. R. Jang, “Self-Learning Fuzzy Controllers

50

Based on Temporal Back Propagation,” IEEE
Trans. on Neural Networks, vol. 3, pp. 714-723,
Sept. 1992.

5. H. R. Berenji and P. Khedkar, “Learning and
Tuning Fuzzy Logic Controllers Through Re-
inforcements,” IEEE Trans. on Neural Networks,
vol. 3, pp. 724-740, Sept. 1992.

6. C.-T. Lin and C. G. Lee, “Neural-Network-Based
Fuzzy Logic Control and Decision System,” IEEE
Trans. on Computers, vol. 40, pp. 1320-1336, Dec.
1991.

7. C.-C. Lee, “Intelligent Control Based on Fuzzy
Logic and Neural Net Theory,” Proceedings of the
International Conference on Fuzzy Logic, pp. 759-
764, July 1990.

8. S. H. Jung, “Automatic Fuzzy Rule Generation by
Simulating Human Knowledge Gathering Process,”
Journal of the Korea Fuzzy Logic and Intelligent
Systems Society, vol. 5, pp. 12-17, Dec. 1995.

9. S. H. Jung, T. G. Kim, and K. H. Park, “Auto-
matic Fuzzy Rule Generation by Simulating Hu-
man Control Strategies,” Proceedings of the Korea
Fuzzy Math and Systems Society, vol. 4, pp. 72-78,
Nov. 1994.

10. M. Srinivas and L. M. Patnaik, “Genetic Algor-
ithms: A Survey,” IEEE Computer Magazine, pp.
17-26, June 1994.

11. J. L. R. Filho and P. C. Treleaven,

Algorithm Programming Environments,” JEEE

“Genetic-

Computer Magazine, pp. 28-43, June 1994.

12. G. A. Vignaux and Z. Michalewicz, “A Genetic
Algorithm for the Linear Transportation Pro-
blem,” [EEE Trans. on Systems, Man and Cyber-
netics, vol. 21, pp. 445-452, MARCH/APRIL 1992.

13. C. L. Karr and E. J. Gentry, “Fuzzy Control of
pH Using Genetic Algorithms,” JEEE Trans. on
Fuzzy Systems, vol. 1, pp. 46-53, Jan. 1993

14. M. Srinivas and L. M. Patnaik, “Adaptive Pro-
babilities of Crossover and Mutation in Genetic
Algorithms,” IEEE Trans. on Systems, Man and
Cybernetics, vol. 24, pp. 656-667, Apr. 1994.

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability

15. S. H. Jung, K. H. Cho, T. G. Kim, and K. H.
- Park, “Defuzzification Method for Multishaped
Output Fuzzy Sets,” Electronics Letters, vol. 30,
pp. 740-742, Apr. 1994.

& A Z(Sung Hoon Jung) 334

1988 : f g gt HAF 4 &4

191 @28y A7 9 AxAFEY &4
(F34A

1995 : g2 ried Y] € AL &9
(FgtAD

1996\~ A : ghAd o) 8t g WA ek R AP

%FERA L AS A, F& #A, A 32

&, 2d g /A Ed ol

51

