• Title/Summary/Keyword: nonlinear codes

Search Result 221, Processing Time 0.024 seconds

Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members (고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석)

  • 연정흠;이제일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A methods to calculate non-linear moment-curvature relations of high-strength PSC flexural members for numerical analysis has been proposed. The moment-curvature relations were calculated with assumptions of design codes and by the layer method. The results of the proposed procedures for moment-curvature relations and numerical analysis were compared with those of pre-existing tests. The absorption energy rate of the design codes was about 30% larger than that of the layer method. The ultimate load and the external work of the layer method were 90% and 85% of those of tests, respectively The ultimate load of the strength design method was 97% of that of tests, but the external work was over-estimated with 122%. The ultimate load and external work by the proposed equation of the CEB-FIP Model Code were 113% and 173% of those of tests, respectively. It show that the use of ultimate strain of 0.0035 should be over-estimated for high-strength concrete. The procedure of non-linear numerical analysis of this research could be stably simulated the behavior of concrete flexural members until the ultimate state, and calculate results of the load-deflection relation and cracking pattern were very similar with those of tests.

Performance-based wind design of tall buildings: concepts, frameworks, and opportunities

  • Bezabeh, Matiyas A.;Bitsuamlak, Girma T.;Tesfamariam, Solomon
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.103-142
    • /
    • 2020
  • One of the next frontiers in structural wind engineering is the design of tall buildings using performance-based approaches. Currently, tall buildings are being designed using provisions in the building codes and standards to meet an acceptable level of public safety and serviceability. However, recent studies in wind and earthquake engineering have highlighted the conceptual and practical limitations of the code-oriented design methods. Performance-based wind design (PBWD) is the logical extension of the current wind design approaches to overcome these limitations. Towards the development of PBWD, in this paper, we systematically review the advances made in this field, highlight the research gaps, and provide a basis for future research. Initially, the anatomy of the Wind Loading Chain is presented, in which emphasis was given to the early works of Alan G. Davenport. Next, the current state of practice to design tall buildings for wind load is presented, and its limitations are highlighted. Following this, we critically review the state of development of PBWD. Our review on PBWD covers the existing design frameworks and studies conducted on the nonlinear response of structures under wind loads. Thereafter, to provide a basis for future research, the nonlinear response of simple yielding systems under long-duration turbulent wind loads is studied in two phases. The first phase investigates the issue of damage accumulation in conventional structural systems characterized by elastic-plastic, bilinear, pinching, degrading, and deteriorating hysteretic models. The second phase introduces methods to develop new performance objectives for PBWD based on joint peak and residual deformation demands. In this context, the utility of multi-variate demand modeling using copulas and kernel density estimation techniques is presented. This paper also presents joined fragility curves based on the results of incremental dynamic analysis. Subsequently, the efficiency of tuned mass dampers and self-centering systems in controlling the accumulation of damage in wind-excited structural systems are investigated. The role and the need for explicit modeling of uncertainties in PBWD are also discussed with a case study example. Lastly, two unified PBWD frameworks are proposed by adapting and revisiting the Wind Loading Chain. This paper concludes with a summary and a proposal for future research.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Reliability-based Redundancy Evaluation Method for Steel Plate Girder Bridges (신뢰도 기반 플레이트 거더교의 여유도 평가 기법)

  • Joe, Woom Do Ji;Park, Yong Myung;Jin, Seung Hoon;Hwang, Min Oh;Chung, Heung Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.493-503
    • /
    • 2009
  • Bridge redundancy is defined as the capability of a bridge to sustain loads after one of its main members incurs damage. It is affected by many parameters, including the number of girders, span length, girder height, internal supports, and secondary members. The present AASHTO and Korean Bridge design codes, however, define bridge redundancy only as the number of girders, and neither the evaluation method nor the required level of redundancy is given. This study presented a redundancy evaluation method for plate girder bridges with severe fatigue damage based on the reliability method,by considering the essential parameters. A required level of redundancy was also proposed as a target system reliability index from the load capacity analysis and reliability analysis of the basis bridge designed by LRFD. Finally, the level of redundancy of simple and continuous plate girder bridges with a variable number of girders designed by ASD was evaluated and presented.

Development of a displacement-based design approach for modern mixed RC-URM wall structures

  • Paparoa, Alessandro;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.789-830
    • /
    • 2015
  • The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through nonlinear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.

An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups

  • Mohammadhassani, Mohammad;Nezamabadi-pour, Hossein;Suhatril, Meldi;shariati, Mahdi
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.785-809
    • /
    • 2014
  • In this paper, an Adaptive nerou-based inference system (ANFIS) is being used for the prediction of shear strength of high strength concrete (HSC) beams without stirrups. The input parameters comprise of tensile reinforcement ratio, concrete compressive strength and shear span to depth ratio. Additionally, 122 experimental datasets were extracted from the literature review on the HSC beams with some comparable cross sectional dimensions and loading conditions. A comparative analysis has been carried out on the predicted shear strength of HSC beams without stirrups via the ANFIS method with those from the CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94 codes of design. The shear strength prediction with ANFIS is discovered to be superior to CEB-FIP Model Code (1990), AASHTO LRFD 1994 and CSA A23.3 - 94. The predictions obtained from the ANFIS are harmonious with the test results not accounting for the shear span to depth ratio, tensile reinforcement ratio and concrete compressive strength; the data of the average, variance, correlation coefficient and coefficient of variation (CV) of the ratio between the shear strength predicted using the ANFIS method and the real shear strength are 0.995, 0.014, 0.969 and 11.97%, respectively. Taking a look at the CV index, the shear strength prediction shows better in nonlinear iterations such as the ANFIS for shear strength prediction of HSC beams without stirrups.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.

A Study on the Limit State of Steel Structures Under Earthquake (내진해석을 위한 강구조물의 극한상태에 관한 연구)

  • Lee, Seung-Joon;Koo, Min-Se;Chung, Lan;Shin, Dong-Ki
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1991
  • The procedure of the elastic response spectrum method which is used in the codes of many countries involves the computation of a static horizontal substitute loading resulting from the earthquake. The substitute loading is divided by a behavioral factor in order to take energy dissipation due to the real nonlinear structural behavior and damping effects ect. into account. The behavioral factors widely used in many countries are based not on the exact calculation but only on the empirical data. In order to determine the behavioral factors analytically, it is necessary to define the limit state of structures as a first step. In this work, the methods of the determination of limit state for the steel structures are discussed in the geometric, serviceabile and material apsects, and the behavioral factors for the three types of structures are calculated.

  • PDF