• 제목/요약/키워드: nonlinear calculations

검색결과 166건 처리시간 0.022초

Probabilistic seismic assessment of RC box-girder bridges retrofitted with FRP and steel jacketing

  • Naseri, Ali;Roshan, Alireza Mirzagoltabar;Pahlavan, Hossein;Amiri, Gholamreza Ghodrati
    • Coupled systems mechanics
    • /
    • 제9권4호
    • /
    • pp.359-379
    • /
    • 2020
  • Due to susceptibility of bridges in the past earthquakes, vulnerability assessment and strengthening of bridges has gained a particular significance. The objective of the present study is to employ an analytical method for the development of fragility curves, as well as to investigate the effect of strengthening on the RC box-girder bridges. Since fragility curves are used for pre-and post-earthquake planning, this paper has attempted to adopt the most reliable modeling assumptions in order to increase the reliability. Furthermore, to acknowledge the interaction of soil, abutment and pile, the effect of different strengthening methods, such as using steel jacketing and FRP layers, the effect of increase in the bridge pier diameter, and the effect of vertical component of earthquake on the vulnerability of bridges in this study, a three-span RC box-girder bridge was modeled in 9 different cases. Nonlinear dynamic analyses were carried out on the studied bridges subjected to 100 ground motion records via OpenSEES platform. Therefore, the fragility curves were plotted and compared in the four damage states. The results revealed that once the interaction of soil and abutment and the vertical component of the earthquake are accounted for in the calculations, the median fragility is reduced, implying that the bridge becomes more vulnerable. It was also confirmed that steel jackets and FRP layers are suitable methods for pier strengthening which reduces the vulnerability of the bridge.

Development of Design Formula for Predicting Post-Buckling Behaviour and Ultimate Strength of Cylindrical Shell

  • Lee, Jung-Ho;Oh, Young-Cheol;Seo, Kwang-Cheol
    • 해양환경안전학회지
    • /
    • 제23권3호
    • /
    • pp.313-319
    • /
    • 2017
  • Cylindrical shells are often used in ship structures at deck plating with a camber, side shell plating at fore and aft parts, and bilge structure part. It has been believed that such curved shells can be modelled fundamentally by a part of a cylinder under axial compression. From the estimations with the usage of cylinder models, it is known that, in general, curvature increases the buckling strength of a curved shell subjected to axial compression, and that curvature is also expected to increase the ultimate strength. We conduct series of elasto-plastic large deflection analyses in order to clarify the fundamentals in buckling and plastic collapse behaviour of cylindrical shells under axial compression. From the numerical results, we derive design formula for predicting the ultimate strength of cylindrical shell, based on a series of the nonlinear finite element calculations for all edges, simply supporting plating, varying the slenderness ratio, curvature and aspect ratio, as well as the following design formulae for predicting the ultimate strength of cylindrical shell. From a number of analysis results, fitting curve can be developed to use parameter of slenderness ratio with implementation of the method of least squares. The accuracy of design formulae for evaluating ultimate strength has been confirmed by comparing the calculated results with the FE-analysis results and it has a good agreement to predict their ultimate strength.

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • 제20권2호
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

What Do We Learn from Two-Dimensional Raman Spectra by Varying the Polarization Conditions?

  • Ma, Ao;Stratt, Richard M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1126-1134
    • /
    • 2003
  • The signals obtained from the $5^{th}$-order (two-dimensional) Raman spectrum of a liquid can depend dramatically on the polarizations of the various light beams, but to date there has been no evidence presented that different polarization conditions probe any fundamentally different aspects of liquid dynamics. In order to explore the molecular significance of polarization we have carried out a molecular dynamics simulation of the $5^{th}$-order spectrum of a dilute solution of CS₂ in liquid Xe, perhaps the simplest system capable of displaying a full range of polarization dependencies. By focusing on the 5 distinct rotational invariants revealed by the different polarizations and by comparing our results with those from liquid Xe, a liquid whose spectrum has no significant polarization dependence, we discovered that the polarization experiments do, in fact, yield valuable microscopic information. With different linear combinations of the experimental response functions one can separate the part of the signal derived from the purely interaction-induced part of the many-body polarizability from the portion with the largest contributions from single-molecule polarizabilities. This division does not directly address the underlying liquid dynamics, but it significantly simplifies the interpretation of the theoretical calculations which do address this issue. We find that the different linear combinations differ as well in whether they exhibit nodal lines. Despite the absence of nodes with the atomic liquid Xe, observing the resilience of our solution's nodes when we artificially remove the anisotropy of our solute leads us to conclude that there is no direct connection between nodes and specifically molecular degrees of freedom.

수치모형에 의한 터널발파 시뮬레이션에 관한 연구 (Numerical Simulation of Tunnel Blasting)

  • 박정주;박의섭
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.344-351
    • /
    • 2001
  • 발파를 이용한 터널굴착에 있어서, 장약량 산정이나 터널 주변 암반 및 구조물웨 대한 영향 평가 등은 주로 간단한 경험식에 의해 이루어져 왔다. 또한 지금까지 발파의 충격에너지를 고려한 지하구조물의 동해석 연구는 매우 빈약한 실정이라 할 수 있다. 따라서 본 연구에서는 발파하중을 받는 불연속체 지하구조물의 비선형 거동을 평가하기 위하여 2차원 개별요소법의 수치모델기법을 개발하였고, 실제문제에의 적용성을 검토하기 위하여 제방하부에 위치한 터널발파의 수치해석을 통하여 시간별 지하 및 지상 구조물의 변위 및 입자속도의 전파과정을 살펴보았다. 해석결과 본 연구에서 제안한 발파하중의 모형이 실제 문제에 적용될 수 있었고, 이를 개별요소해석에 적용함으로써 발파지역 주변의 구조물의 안정성을 검토할 수 있었다.

  • PDF

단시안 명암강도를 이용한 물체의 3차원 거리측정 (Obtaining 3-D Depth from a Monochrome Shaded Image)

  • Byung Il Kim
    • 전자공학회논문지B
    • /
    • 제29B권7호
    • /
    • pp.52-61
    • /
    • 1992
  • 본 논문은 단시안에 투영된 3차원 물체의 Image에서 측정된 명암강도의 차이를 이용하여 3차원 물체의 절대거리 z 및 형상을 유출하는 수치적인 방법을 연구, 단시안에 의해서도 Camera와 물체사이의 3차원 절대거리가 구해질 수 있음을 보여주고 있다. 기발표된 이론과는 다르게 본 논문에서는 점광원을 이용하여 투영된 명암강도와 3차원 물체의 절대거리 및 형상과의 관계를 물체가 Uniform Lambertian이라는 가정하에서 새로운 관계식으로 정립하였다. 정립된 Non-Linear 관계식은 Smoothness 조건아래 $'Calculus of Variation$'방법을 사용하여 수학적 Algorithm으로 정리되어 Programming 되었고 간단한 실험방법을 이용하여 실제 Data에 적용시켜 그 타당성을 조사하였다.당성을 조사하였다.

  • PDF

선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선 (Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method)

  • 장양;염덕준;김동진
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

지수 사상을 이용한 비선형 열-탄소성 고체의 유한요소해석 : 모델과 시간적분법 (Finite Element Formulation for the Finite Strain Thermo-Elasto-Plastic Solid using Exponential Mapping Algorithm : Model and Time Integration Scheme)

  • 박재균
    • 한국지진공학회논문집
    • /
    • 제8권2호
    • /
    • pp.19-25
    • /
    • 2004
  • 일반적으로 운동방정식을 풀기 위해 많이 이용되는 선형근사모델은 계산이 용이한 반면에 큰 변형상태에서는 그 오차가 커지는 단점이 있다. 따라서 엄밀한 구조물의 응답해석을 위해서는 물성과 기하에 대한 비선형성을 고려해야 한다. 또한, 강과 같이 연성이 큰 재료는 소성 변형을 일으키면서 소산되는 에너지의 대부분이 열로 변하게 되며, 이 열은 열역학 제1 법칙과 2 법칙에 따라 다른 부분으로 전달된다. 이렇게 전달된 열은 온도를 상승시켜 재료의 강도를 약화시키는 역할을 하며, 이것이 다시 구조물의 응답에 영향을 미친다. 본 논문에서는 지진 등의 큰 하중을 받거나 화재로 인한 열 하중을 받는 강구조물의 비선형 대 변형 현상을 적절히 해석할 수 있는 열-탄소성 물성모델을 제안하고 3차원 유한요소해석을 수행하려다.

선미부에 유동제어판을 부착한 선박에 대한 포텐셜 유동해석 (Potential Flow Analysis for a Ship with a Flow Control Plate near the Stern)

  • 최희종;전호환;윤현식;이인원;박동우;김동진
    • 대한조선학회논문집
    • /
    • 제46권6호
    • /
    • pp.587-594
    • /
    • 2009
  • In the paper the effect of a stern-plate attached to a ship was taken into account. The relationship between the trim angle of a ship and the wave-resistance coefficient induced by the a stern-plate was studied using the potential flow analysis method. Numerical algorithm was described using the panel method and the vortex lattice method(VLM) to simulate the flow phenomena around a ship. The non-linearity of the free surface boundary conditions were considered using the iterative method and the IGE-GMRES(Incomplete Gaussian Elimination-The Generalized Minimal RESidual) algorithm was adopted to solve the linear equation at each iterative step. Numerical calculations were carried out to investigate the validity of the adopted algorithm using KCS(KRISO 3600 TEU Container) hull. Possible cases for attachment of the plate were checked. The results showed that the numerical algorithm could be physically appropriate.

Analytical methods for determining the cable configuration and construction parameters of a suspension bridge

  • Zhang, Wen-ming;Tian, Gen-min;Yang, Chao-yu;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.603-625
    • /
    • 2019
  • Main cable configurations under final dead load and in the unloaded state and critical construction parameters (e.g. unstrained cable length, unstrained hanger lengths, and pre-offsets for tower saddles and splay saddles) are the core considerations in the design and construction control of a suspension bridge. For the purpose of accurate calculations, it is necessary to take into account the effects of cable strands over the anchor spans, arc-shaped saddle top, and tower top pre-uplift. In this paper, a method for calculating the cable configuration under final dead load over a main span, two side spans, and two anchor spans, coordinates of tangent points, and unstrained cable length are firstly developed using conditions for mechanical equilibrium and geometric relationships. Hanger tensile forces and unstrained hanger lengths are calculated by iteratively solving the equations governing hanger tensile forces and the cable configuration, which gives careful consideration to the effect of hanger weight. Next, equations for calculating the cable configuration in the unloaded state and pre-offsets of saddles are derived from the cable configuration under final dead load and the conditions for unstrained cable length to be conserved. The equations for the main span, two side spans and two anchor spans are then solved simultaneously. In the proposed methods, coupled nonlinear equations are solved by turning them into an unconstrained optimization problem, making the procedure simplified. The feasibility and validity of the proposed methods are demonstrated through a numerical example.