• 제목/요약/키워드: nonlinear boundary value problem

검색결과 171건 처리시간 0.019초

CRITICAL POINTS AND MULTIPLE SOLUTIONS OF A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

  • Choi, Kyeongpyo
    • Korean Journal of Mathematics
    • /
    • 제14권2호
    • /
    • pp.259-271
    • /
    • 2006
  • We consider a semilinear elliptic boundary value problem with Dirichlet boundary condition $Au+bu^+-au^-=t_{1{\phi}1}+t_{2{\phi}2}$ in ${\Omega}$ and ${\phi}_n$ is the eigenfuction corresponding to ${\lambda}_n(n=1,2,{\cdots})$. We have a concern with the multiplicity of solutions of the equation when ${\lambda}_1$ < a < ${\lambda}_2$ < b < ${\lambda}_3$.

  • PDF

BOUNDARY VALUE PROBLEM FOR A CLASS OF THE SYSTEMS OF THE NONLINEAR ELLIPTIC EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권1호
    • /
    • pp.67-76
    • /
    • 2009
  • We show the existence of at least two nontrivial solutions for a class of the systems of the nonlinear elliptic equations with Dirichlet boundary condition under some conditions for the nonlinear term. We obtain this result by using the variational linking theory in the critical point theory.

  • PDF

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • 제23권3호
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

MONOTONE ITERATION SCHEME FOR A FORCED DUFFING EQUATION WITH NONLOCAL THREE-POINT CONDITIONS

  • Alsaedi, Ahmed
    • 대한수학회논문집
    • /
    • 제22권1호
    • /
    • pp.53-64
    • /
    • 2007
  • In this paper, we apply the generalized quasilinearization technique to a forced Duffing equation with three-point mixed nonlinear nonlocal boundary conditions and obtain sequences of upper and lower solutions converging monotonically and quadratically to the unique solution of the problem.

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE NONCOOPERATIVE ELLIPTIC SYSTEM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • 제23권2호
    • /
    • pp.259-267
    • /
    • 2015
  • This paper is devoted to investigate the existence of the solutions for a class of the noncooperative elliptic system involving critical Sobolev exponents. We show the existence of the negative solution for the problem. We show the existence of the unique negative solution for the system of the linear part of the problem under some conditions, which is also the negative solution of the nonlinear problem. We also consider the eigenvalue problem of the matrix.

비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성 (Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition)

  • 이원경;여명환;배상수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 1997
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF