• 제목/요약/키워드: nonlinear beam problem

검색결과 118건 처리시간 0.021초

Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading

  • Coskun, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제34권3호
    • /
    • pp.319-334
    • /
    • 2010
  • The dynamic response of a finite Bernoulli-Euler beam resting on a tensionless Pasternak foundation and subjected to a concentrated harmonic load is investigated in this study. This load may be applied at the center of the beam, or it may be offset from the center. Since the elastic foundation is assumed to be tensionless, the beam may lift off the foundation, resulting in contact and non-contact regions in the system. An analytical/numerical solution is obtained from the governing equations of the contact and non-contact regions to determine the coordinates of the lift-off points. Although there is no nonlinear term in the equations, the problem appears to be nonlinear since the contact regions are not known in advance. Due to that nonlinearity, the essentials of the problem (the coordinates of the lift-off points) are calculated numerically using the Newton-Raphson technique. The results, which represent the symmetric and asymmetric responses of the beam, are presented graphically in this work. They illustrate the effects of the forcing frequency and the beam length on the extent of the contact regions and displacements.

Nonlinear thermal displacements of laminated composite beams

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.691-705
    • /
    • 2018
  • In this paper, nonlinear displacements of laminated composite beams are investigated under non-uniform temperature rising with temperature dependent physical properties. Total Lagrangian approach is used in conjunction with the Timoshenko beam theory for nonlinear kinematic model. Material properties of the laminated composite beam are temperature dependent. In the solution of the nonlinear problem, incremental displacement-based finite element method is used with Newton-Raphson iteration method. The distinctive feature of this study is nonlinear thermal analysis of Timoshenko Laminated beams full geometric non-linearity and by using finite element method. In this study, the differences between temperature dependent and independent physical properties are investigated for laminated composite beams for nonlinear case. Effects of fiber orientation angles, the stacking sequence of laminates and temperature on the nonlinear displacements are examined and discussed in detail.

Nonlinear free vibration analysis of a composite beam reinforced by carbon nanotubes

  • M., Alimoradzadeh;S.D., Akbas
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.335-344
    • /
    • 2023
  • This investigation presents nonlinear free vibration of a carbon nanotube reinforced composite beam based on the Von Kármán nonlinearity and the Euler-Bernoulli beam theory The material properties of the structure is considered as made of a polymeric matrix by reinforced carbon nanotubes according to different material distributions. The governing equations of the nonlinear vibration problem is delivered by using Hamilton's principle and the Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained with the effect of different patterns of reinforcement.

비선형 경계조건을 가진 보의 정규모드진동 (Normal Mode Vibrations of a Beam with a Nonlinear Boundary Condition)

  • 김현기;이원경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.392-398
    • /
    • 1998
  • In order to check the validity of nonlinear normal modes of continuous, systems by means of the energy-based formulation, we consider a beam with a nonlinear boundary condition. The initial and boundary e c6nsl of a linear partial differential equation and a nonlinear boundary condition is reduced to a linear boundary value problem consisting of an 8th order ordinary differential equations and linear boundary conditions. After obtaining the asymptotic solution corresponding to each normal mode, we compare this with numerical results by the finite element method.

  • PDF

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.

Hygro-thermal post-buckling analysis of a functionally graded beam

  • Akbas, Seref D.
    • Coupled systems mechanics
    • /
    • 제8권5호
    • /
    • pp.459-471
    • /
    • 2019
  • This paper presents post-buckling analysis of a functionally graded beam under hygro-thermal effect. The material properties of the beam change though height axis with a power-law function. In the nonlinear kinematics of the post-buckling problem, the total Lagrangian approach is used. In the solution of the problem, the finite element method is used within plane solid continua. In the nonlinear solution, the Newton-Raphson method is used with incremental displacements. Comparison studies are performed. In the numerical results, the effects of the material distribution, the geometry parameters, the temperature and the moisture changes on the post-buckling responses of the functionally graded beam are presented and discussed.

비선형 정규모드를 이용한 보의 비평면 자유진동해석 (Analysis of Nonplanar Free Vibrations of a Beam by Nonlinear Normal Mode)

  • 이원경;이규수;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.441-448
    • /
    • 2000
  • An investigation into the nonlinear free vibrations of a cantilever beam which can have not only planar motion but also nonplanar motion is made. Using Galerkin's method based on the first mode in each motion, we transform the boundary and initial value problem into an initial value problem of two-degree-of-freedom system. The system turns out to have two normal modes. By Synge's stability concept we examine the stability of each mode. In order to check validity of the stability we obtain the numerical Poincare map of the motions neighboring on each mode.

  • PDF

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

CRITICAL POINT THEORY AND AN ASYMMETRIC BEAM EQUATION WITH TWO JUMPING NONLINEAR TERMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권3호
    • /
    • pp.299-314
    • /
    • 2009
  • We investigate the multiple nontrivial solutions of the asymmetric beam equation $u_{tt}+u_{xxxx}=b_1[{(u + 2)}^+-2]+b_2[{(u + 3)}^+-3]$ with Dirichlet boundary condition and periodic condition on t. We reduce this problem into a two-dimensional problem by using variational reduction method and apply the Mountain Pass theorem to find the nontrivial solutions of the equation.

  • PDF

비선형 경계조건을 가진 보의 정상상태 진동응답 (Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition)

  • 이원경;여명환
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.