• Title/Summary/Keyword: nonlinear Schrodinger equations

Search Result 4, Processing Time 0.016 seconds

ANALYTIC SMOOTHING EFFECT AND SINGLE POINT SINGULARITY FOR THE NONLINEAR SCHRODINGER EQUATIONS

  • Kato, Keiichi;Ogawa, Takayoshi
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1071-1084
    • /
    • 2000
  • We show that a weak solution of the Cauchy problem for he nonlinear Schrodinger equation, {i∂(sub)t u + ∂$^2$(sub)x u = f(u,u), t∈(-T,T), x∈R, u(0,x) = ø(x).} in the negative solbolev space H(sup)s has a smoothing effect up to real analyticity if the initial data only have a single point singularity such as the Dirac delta measure. It is shown that for H(sup)s (R)(s>-3/4) data satisfying the condition (※Equations, See Full-text) the solution is analytic in both space and time variable. The argument is based on the recent progress on the well-posedness result by Bourgain [2] and Kenig-Ponce-Vega [18] and previous work by Kato-Ogawa [12]. We give an improved new argument in the regularity argument.

  • PDF

APPLICATIONS OF THE WEIGHTED SCHEME FOR GNLS EQUATIONS IN SOLVING SOLITON SOLUTIONS

  • Zhang, Tiande;Cao, Qingjie;Price, G.W.;Djidjeli, K.;Twizell, E.H.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.615-632
    • /
    • 1998
  • Soliton solutions of a class of generalized nonlinear evo-lution equations are discussed analytically and numerically which is achieved using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical dolutions and the interactions between the solitons for the generalized nonlinear Schrodinger equations. The characteristic behavior of the nonlinear-ity admitted in the system has been investigated and the soliton state of the system in the limit of $\alpha\;\longrightarrow\;0$ and $\alpha\;\longrightarrow\;\infty$ has been studied. The results presented show that soliton phenomena are character-istics associated with the nonlinearities of the dynamical systems.

Theoretical Description of All-Optical Switching Phenomena Involving Coupled Gap Solitons

  • Lee, Sangjae
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.403-413
    • /
    • 1996
  • We study the propagation of two pulses with orthogonal linear polarizations in a nonlinear periodic dielectric structure with $X^{(3)}$ nonlinearity. Using an envelope- function approach, we derive the coupled nonlinear Schrodinger equations governing the spatio-temporal evolutions of the two orthogonally polarized modes in a nonlinear periodic structure. We then find their solitary-wave solutions referred to as coupled gap solitons. We show that two orthogonally polarized pulses can co-propagate as a coupled gap soliton through a nonlinear periodic structure while each pulse alone will be strongly reflected due to the Bragg reflection. Based on the results, we present an all-optical switching scheme which has a novel architecture and principle. We also study the stability of coupled gap solitons to find the dragging phenomena in a nonlinear birefringent periodic medium.

  • PDF

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.14-26
    • /
    • 2002
  • A new model for degenerate semiconductor quantum well devices was developed. In this model, the multi-subband Boltzmann transport equation was formulated by applying the Pauli exclusion principle and coupled to the Schrodinger and Poisson equations. For the solution of the resulted nonlinear system, the finite difference method and the Newton-Raphson method was used and carrier energy distribution function was obtained for each subband. The model was applied to a Si MOSFET inversion layer. The results of the simulation showed the changes of the distribution function from Boltzmann like to Fermi-Dirac like depending on the electron density in the quantum well, which presents the appropriateness of this modeling, the effectiveness of the solution method, and the importance of the Pauli -exclusion principle according to the reduced size of semiconductor devices.