• 제목/요약/키워드: nonflammable

검색결과 34건 처리시간 0.022초

Manufacture of Apparatus for Coolant Mix Performance Test (냉각제 혼합성능 시험용 장치의 제작)

  • Ku, Hyoun-Kon;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제21권2호
    • /
    • pp.73-78
    • /
    • 2022
  • The test apparatus that can be protected from the high-temperature combustion flame and coolant injection was successfully manufactured. In this study, the coolant-injection module had a controllable consistent pressure, and the entire combustion module was protected using a nonflammable composite liner. Every flange was designed in accordance with the DIN standard, and the entire body of the module was designed in accordance with the EN 13445 code. Additionally, the hydraulic pressure test was performed in accordance with the 2014/68/EU directive and EN 13445 standard. Finally, after manufacturing, performance tests (such as pressure tests) were conducted to verify the reliability and safety.

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • 제31권6호
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • 제14권2호
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

Development and Performance Evaluation of Non-flammable Mineral Foam Board Using Waste Glass (폐유리를 활용한 불연 무기물 발포 보드 개발 및 성능평가)

  • Kim, Hyen-Soo;Choi, Won-Young;Kim, Sang-Heon;Choi, Seung-Hwan;Park, Soon-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • 제8권1호
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, non-flammable mineral foam board using waste glass that can be produced to standardized specifications were developed and evaluated for the performance. In addition to the physical and mechanical performance, the environmental properties such as insulation, non-combustibility, gas hazard, sound absorption, etc. were tested to verify the use as interior and exterior building materials. Through the structural review, the validity was verified for the application of the office and restaurant building.

A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion (촉매연소를 이용한 수소버너의 작동 특성에 관한 연구)

  • Kim, Tae-Young;Park, Chang-Kwon;Oh, Byeong-Soo
    • Journal of Hydrogen and New Energy
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.

The Calculation and Measurement of Flash Point for Water+1-Propanol and Water+2-Propanol Using Closed Cup Aparatus (밀폐식 장치를 사용한 Water+1-Propanol 과 Water+2-Propanol의 인화점 측정과 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of Energy Engineering
    • /
    • 제25권4호
    • /
    • pp.190-197
    • /
    • 2016
  • Flash point is the one of the important properties for the safe handling of inflammable liquid solution. In this paper, flash points of binary liquid solutions, water+1-propanol and water+2-propanol, were been measured by using Seta flash closed cup aparatus. Flash point was estimated using regression analysis method. Flash points were also estimated by the method based on Raoul's law and the method optimizing the binary parameters of van Laar equation. Experimental results were compared with the calculated results. The regression analysis method is able to estimate the flash point fairly well for water+1-propanol and water+2-propanol mixture.

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.

Thermal and Mechanical Properties of Ceramic Coated Al Bus Bar (세라믹 코팅 Al 부스바의 열적·기계적 특성)

  • Kwag, Dong-Soon;Baek, Seung-Myeong;Kwak, Min Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제66권11호
    • /
    • pp.1651-1656
    • /
    • 2017
  • This paper deals with the thermal and mechanical properties of ceramic coating material for bus bars. A ceramic coated samples were prepared for the mechanical properties test. There are two types of samples. One is a square shape and the other is a busbar shape. Each sample was deteriorated for 30 days to compare the thermal and mechanical properties with the non-degraded samples. Two thermal properties tests are TGA and flammability tests, and four mechanical properties tests are drop impact test, cross cut, tensile test, and bend test. The ceramic coating material was never damaged by impact and did not separate from aluminum in the cross cut test. In the tensile test, the breakage of the insulating material did not occur until aluminum fractured, and the breakage of the insulating material did not occur until the maximum load in the bending test. The decomposition temperature (melting point) of the ceramic coating material was higher than that of other epoxy insulators. This ceramic coating material is nonflammable and it has excellent fire stability.

Growth of Single Crystalline 3C-SiC Thin Films for High Power Devices by CVD (CVD에 의한 고전력 디바이스용 단결정 3C-SiC 박막 성장)

  • Chung, Gwiy-Sang;Shim, Jae-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제23권2호
    • /
    • pp.98-102
    • /
    • 2010
  • This paper describes that single crystalline 3C-SiC (cubic silicon carbide) thin films have been deposited on carbonized Si(100) substrates using hexamethyldisilane (HMDS, $Si_2(CH_3){_6}$) as a safe organosilane single precursor and a nonflammable mixture of Ar and $H_2$ gas as the carrier gas by APCVD at $1280^{\circ}C$. The deposition was performed under various conditions to determine the optimized growth condition. The crystallinity of the 3C-SiC thin film was analyzed by XRD (X-ray diffraction). The surface morphology was also observed by AFM (atomic force microscopy) and voids between SiC and Si interfaces were measured by SEM (scanning electron microscopy). Finally, residual strain and hall mobility was investigated by surface profiler and hall measurement, respectively. From these results, the single crystalline 3C-SiC film had a good crystal quality without defects due to viods, a low residual stress, a very low roughness.

Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes (전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향)

  • Jeong-Myeong Yoon;Cheol-Min Park
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.