• Title/Summary/Keyword: nondestructive evaluation (NDE)

Search Result 128, Processing Time 0.021 seconds

Characterization of Fiber Direction Influence in CFRP Composites Using Advanced NDE Techniques

  • Im, Kwang-Hee;Jang, Ju-Hwan;Back, Chong-Gui;Jeong, Ok-Su;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1003-1007
    • /
    • 2012
  • A nondestructive technique would be very useful. Advanced NDE T-ray (terahertz ray) techniques of technology and instrumentation has provided a probing field on the electromagnetic spectrum. However, the T-ray is limited in order to penetrate a conducting material to some degree. Here, the T-ray would not go through easily the CFRP composite laminates since carbon fibers are electrically conducting while the epoxy matrix is not. So, investigation of terahertz time domain spectroscopy (THz TDS) was made and reflection and transmission configurations were studied for a 48-ply thermoplastic PPS(poly-phenylene sulfide)-based CFRP solid laminate. It is found that the electrical conductivity of CFRP composites depends on the direction of unidirectional fibers.

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

Linkage of Damage Evaluation to Structural System Reliability (손상평가와 구조물 신뢰성과의 연계)

  • Park, Soo Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • Nondestructive Damage Evaluation (NDE) techniques yield the damage location and its size from the modal characteristics of pre-damaged and post-damaged structures. To predict the system reliability of the aging structure, results from the NDE are integrated into the element/component failure probabilities. The element/component failure probabilities can be calculated from failure functions for each element/component with the aid of techniques from a structural reliability analysis. In this paper, a method to estimate the system reliability of a structure that is based on the reliabilities of elements/components in a given structure is presented. The efficacy of the combination of the nondestructive damage detection and the structural reliability evaluation is demonstrated using pre-damaged and post-damaged modal data obtained from numerical simulations of a rigid frame.

Detection of Inclusions in Concrete Slab by Impact-Resonance Method (충격공진법을 이용한 콘크리트 슬래브 내의 개재물 검출)

  • Kim, Hak-Hyun;Yim, Hyun-June;Lee, Kwang-Myong;Cho, Nam-Jun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.3
    • /
    • pp.221-230
    • /
    • 2000
  • The usefulness and limitations of the impact-resonance method, which is a nondestructive evaluation (NDE) method for concrete, are studied by both experimental and theoretical methods. For the experimental study, several concrete slab specimens with various inclusions embedded were fabricated, and tested by the impact-resonance method. Some of the inclusions have been detected and accurately located, but some have not. The reasons for the failure in the latter cases have been investigated theoretically by using finite element analyses, from which the primary factors determining the success of the method have also been identified. This study will serve to enhance the understanding of the underlying physics and to improve the usefulness of the impact-resonance method as applied to concrete NDE.

  • PDF

Investigation of Transmission Process for Ultrasonic Wave in Wood (목재 내 초음파 전달 경로 구명)

  • Lee, Jun-Jae;Kim, Gwang-Mo;Bae, Mun-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.31-37
    • /
    • 2003
  • Among the nondestructive evaluation (NDE) methods for wood defect detection, ultrasonic wave has been considered as competitive technique in terms of economics and workability. Until now, researches on application of NDE methods for wood have focused mainly on standing tree and logs. Recently, some attempts have been conducted with NDE technique, for evaluation of wooden structural members. However, wooden structural members are different from others (standing tree or log) in various aspects. Expecially when some parts or whole member are covered with other materials, they can't be evaluated appropriately on general NDE methods. For the purpose of development of proper NDE technique for the wooden structural members, the ultrasonic wave transmission process investigated on artificial defect in wood. First, various types of transmission process were assumed, and then the transmission times were predicted respectively. Predicted times were compared with the measured time of ultrasonic wave and then a suitable type of transmission process is determined. In case of the ultrasonic wave doesn't transmit directly due to defect, it is reflected once only at the opposite surface of member, and the path is accord with the line of shortest length.

Development of an Ultrasonic Inspection Technique for LP Turbine Rotor Disc (초음파를 이용한 저압 터빈 로타 디스크 검사 기술 개발)

  • Chang, H.K.;Cho, K.S.;Won, S.H.;Chung, M.H.;Cho, Y.S.;Hur, K.B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 1997
  • Turbine rotor disc consists of disc, bore, keyway, hub, and rim in which the typical defects are located. And these part of disc has very complicated geometry, therefore proper transducer selection, wedge design, fabrication, classification and evaluation of the signal identification are required. In this research, test block with the artificial flaws at keyway and boresurface parts have been used in order to establish the ultrasonic inspection technique for flaw detectability on disc. The analysis of the signals from the test blocks was performed. The wedges were designed according to the curvature from the discs. All the ultrasonic signals were collected and identified for evaluation. The ultrasonic inspection technique for the flaw-detection was established from this research. And it is proved that the result of this research can be applicable in the field inspection.

  • PDF

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.

Fiber Volume Fraction Measurement of Fiber Reinforced Plastics by Using Gamma-Ray (감마선을 이용한 복합재료의 섬유체적분율 측정)

  • Jang, J.H.;Cho, K.S.;Chang, H.K.;Park, J.H.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.3
    • /
    • pp.151-155
    • /
    • 1997
  • In this research, nondestructive test using a radioisotope, $^{241}Am$ gamma-ray, was accomplished in order to evaluate the fiber volume fraction of the accumulated composite layers such as glass fiber/epoxy and carbon fiber/epoxy. Attenuation coefficients of the fiber and resin were measured respectively by NaI(T1) detector The fibers volume fraction was measured for various thickness of composite layers between 2 and 20mm. Fiber volume fraction of the composite layers were also measured for various amount of fibers. The experimental errors from nondestructive test using gamma-ray were in the range of ${\pm}1{\sim}2.5%$ in comparison with those from observation by optical microscopy. By selecting the optimum energy and activity of radioisotope, this method can provide a new means for the evaluation of the fiber volume fraction.

  • PDF

Inspection of Structural Elements Using NDE (비파괴 시험을 이용한 RC 구조물 상태진단)

  • Shim, Hyung-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.101-108
    • /
    • 2009
  • Mathematical basis of interpretation of data from nondestructive evaluation (NDE) methods in condition assessment of structures is presented. In structural inspection with NDE methods, NDE data are not directly used for the condition assessment. Instead, NDE data must be interpreted as condition of inspected element. Correct assessments of conditions depend on many factors such as the inaccuracy and the variability in NDE measurements and the uncertainty in correlation between attributes (what is measured) and conditions (what is sought in the inspection). A full description of the performance of NDE methods considers the relation of test data to conditions of elements. The quality of the test itself is important, but equally important is the interpretation that occurs after the test. The effects of variability in test data and uncertainty in correlations of attributes and conditions are presented in three examples of field testing methods.