• Title/Summary/Keyword: noncoherent detection

Search Result 44, Processing Time 0.022 seconds

A Study on Performance Analysis of IEEE 802.15.4b Noncoherent Receivers at 915MHz under Pulse Jamming (Pulse Jamming 환경 하에서 IEEE 802.15.4b 915MHz 비동기식 수신기 성능 분석에 대한 연구)

  • Lee, Sung-Yong;Cheong, Cha-Keon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.296-298
    • /
    • 2009
  • In this paper, we are performance analysis of IEEE 802.15.4b LR-WAPN(Low-Rate Wireless Personal Area Network; Zigbee) system noncoherent receivers at 915MHz under Jamming. IEEE 802.15.4b concerns itself with devices at 915MHz, which employ a higher data rate of up to 250 kbps, and which use O-QPSK(Offset Quradrature Phase Shift Keying modulation with DSSS(Direct Sequence Spread Spectrum). Communication between devices can still be hampered by the presence of interferers outside the network, whether the interference be intentional or not. Hence the receivers can not have stable receiving condition due to worse BER. To solve this problem, we present a mere stabilized receiver system of using noncoherent detection. In this paper, we look instead at the effect of jamming, i.e. intentional interference, on the BER performance of IEEE 802.15.4 devices.

  • PDF

A Coherent-based Symbol Detector for 2.45GHz LR-WPAN Receiver (2.45GHz LR-WPAN 수신기를 위한 Coherent 기반의 Symbol Detector)

  • Han Jung-Su;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.176-186
    • /
    • 2006
  • In this paper, we propose an enhanced symbol detector algorithm for 2.45GHz LR-WPAN(Low-Rate Wireless Personal Area Network) receiver. Because the frequency offset of $\pm$80ppm on 2.45GHz band is recommended in IEEE 802.15.4 LR-WPAN(Low-Rate Wireless Personal Area Network) specification, a symbol detector algorithm having stable operation in the channel environment with large frequency offset is required. For robustness to the frequency offset, non-coherent detection-based symbol detector algorithm is typically applied in the LR-WPAN receiver modem. However, the noncoherent symbol detector has increased performance degradation and hardware complexity due to squaring loss of I/Q squaring operation. Therefore we propose a coherent detection-based symbol detector algorithm with frequency offset compensation using a preamble symbol. The proposed algorithm is more suitable for LR-WPAN receiver aimed at low-cost, low-power and low-complexity than the non-coherent symbol detector, since it can reduce performance degradation due to squaring loss of I/Q squaring operation and implementation complexity. Simulation results show that the proposed algorithm has performance improvement of about 1dB in various channel environments.

Performance Analysis on the Multiple Trellis Coded CPFSK for the Noncoherent Receiver without CSI (채널 상태 정보를 사용하지 않는 비동기식 복조기를 위한 다중 격자 부호화 연속 위상 주파수 변조 방식의 성능분석)

  • 김창중;이호경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.942-948
    • /
    • 2003
  • In this paper, we analyze the performance of multiple trellis coded modulation applied to continuous phase frequency shift keying (MTCM/CPFSK) for the noncoherent receiver without channel state information (CSI) on the interleaved Rician fading channel. In this system, the squared cross-correlation between the received signal and a candidate signal is used as the branch metric of the Viterbi decoder. To obtain the bit error performance of this system, we analyze the approximated pairwise error probability (PEP) and the exact PEP. We also derive the equivalent normalized squared distance (ENSD) and compare it with the ENSD of the noncoherent receiver with perfect CSI. Simulation results are also provided to verify the theoretical performance analysis.

Channel Estimation for WLAN System Employing CCK Modulation in Multipath Fading Channels

  • Cho, Jin-Woong;Kang, Cheol-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1437-1443
    • /
    • 2000
  • This paper considers a channel estimation technique in a wireless local area network (WLAN) system with complementary code keying (CCK) signaling over multipath fading channels. This scheme uses the maximum correlator output of RAKE receiver for the extraction of the channel parameters. The performance of the proposed detection technique is compared with that of a noncoherent detection technique, and a significant improvement of performance is observed in terms of the bit error probability.

  • PDF

Performance evaluation of the single-dwell and double-dwell detection schemes in the IS-95 reverse link (IS-95역방향 링크에서 단일 적분 및 이중 적분 검색 방식의 성능 분석)

  • 강법주;박형래;손정영;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.383-393
    • /
    • 1996
  • This paper considers the evaluation of the ecquistion performance for an accesschannel preamble based on a random access procedure of direct sequence code division multiple access(DS/CDMA) reverse link. The parallel acquistion technique that employs the single-well detection scheme and the multiple-dwell(double-dwell) detection scheme is mentioned. The acquisition performance for two detection schemes is compared in therms of the acquisition probability and the acquisition time. The parallel acquisition is done by a bank of N parallel I/Q noncoherent correlators. Expressions on the detection, false alarm, and miss probabilities of the single-dwell and multiple-dwell(double-well) detection schemes are derived for multiple H$_{1}$ cells and multipath Rayleight fading channel. comparing the single-dwell detection scheme with the multiple-dwell(double-dwell) detection scheme in the case of employing the parallel acquisition technique in the reverse link,the numerical results show that the single-dwell detection scheme deomonstrates a better performance.

  • PDF

Performance Analysis of Trellis Detection in the TFM System (TFM 방식에서 Trellis 검파의 성능 분석)

  • 정의성;조형래;홍대식;강창언
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.1-9
    • /
    • 1992
  • In this thesis, the trellis detection scheme is proposed to improve the error performance of the noncoherent detection in the TFM system. Trellis detection takes advantage of the trellis property of TFM-encoded signals. The trellis property is created by giving correlations among adjacent TFM-encoded signals at the transmitter. The performance of the trellis detection scheme is analyzed by means of the Bernoulli trials with the average symbol error probability, and is compared to that of the bit-by-bit detection scheme. As a result,when the SNR is below 20 dB in the Rayleigh fading and AWGN channel, the trellis detection is inferior to the bit-by-bit detections. But when SNR is above 20 dB, the trellis detection is superior to the bit-by-bit detection, and its performance enhancement is better as the SNR increases.

  • PDF

The Performance of Chip Level Detection for DS/CDMA Operating in LEO Satellite Channel (저궤도 위성통신을 위한 칩레벨 DS/CDMA 시스템의 성능 평가에 관한 연구)

  • Jae-Hyung Kim;Seung-Wook Hwang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.553-558
    • /
    • 1998
  • We present in this paper the ture union bound of the performance of chip level detection for coded DS/CDMA system operating in Rician fading channels such as LEO satellite mobile radio where the maximum doppler frequency is very high. The main objective of this paper is to calculate the exact doe union bound of BER performance of different performance of different quadrature detectors and to find a optimum spreading factor as a function of fade rate. The rationale of using multiple chip detection is to reduce the effective fade rate or variation. We considered chip level differential detection, chip level maximum likelihood sequence estimation, noncoherent detection and coherent detection with perfect channel state information as a reference.

  • PDF

A Performance Analysis of DF-DPD and DPD-RGPR (DF-DPD와 DPD-RGPR에 대한 성능 분석)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.47 no.4
    • /
    • pp.39-47
    • /
    • 2010
  • This paper proposes a numerical analysis to prove that the performance of the differential phase detections (DPDs) with the decision feedback, such as the decision feedback DPD (DF-DPD) and the DPD with recursively generated phase reference (DPD-RGPR), approach the performance of the coherent detection with differential decoding. The conventional differential phase detection for M-ary DPSK can make the receiver architecture simple, while it can make the bit-error rate (BER) performance poor because of the previous noisy phase as a reference phase. To improve the BER performance of the conventional differential detection, multiple symbol differential detection methods, including DF-DPD and DPD-RGPR, have been proposed. However, the studies on the analysis and on the comparison of these methods have been little performed. Then, this paper mathematically intends to analyze and compare the performance of the DPDs with the decision feedback. The analysis results show that the DPDs with the decision feedback can have the performance equal to that of the coherent detection with differential decoding and be available for the noncoherent detection in the improved performance. Considering the hardware complexity, the DPD RGPR with the simple detection process by using the recursively generated phase reference can be more simply implemented than the DF-DPD based on the architecture whose complexity increases according to the increasing detection length.

Symbol Synchronization Technique using Bit Decision Window for Non-Coherent IR-UWB Systems (Bit Decision 윈도우를 이용한 Noncoherent IR-UWB 수신기의 심벌 동기에 관한 연구)

  • Lee, Soon-Woo;Park, Young-Jin;Kim, Kwan-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.15-21
    • /
    • 2007
  • In this paper, we propose a technique of a practical symbol acquisition and tracking using a low complex ADC and simple digital circuits for noncoherent asynchronous impulse-radio-based Ultra Wideband (IR-UWB) receiver based on energy detection. Compared to previous approaches of detecting an exact acquisition time that require much hardware resource, the proposed technique is to detect the target symbol by finding the symbol acquisition interval per symbol with a target symbo, thus the complexity of the complete signal processing and power consumption by ADC are reduced. To do this, we define the bit decision window (BDW) and analyze the relation between SNR, hardware resource, size of BDW and BER(Bit Error Rate). Using the results, the optimum BDW size for the minimum BER with limited hardware resource is selected. The proposed synchronization technique is verified with an aid of a simulator programmed by considering practical impulse channels.