• Title/Summary/Keyword: non0destructive inspection

Search Result 29, Processing Time 0.027 seconds

Relationship between porcine carcass grades and estimated traits based on conventional and non-destructive inspection methods

  • Lim, Seok-Won;Hwang, Doyon;Kim, Sangwook;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.155-165
    • /
    • 2022
  • As pork consumption increases, rapid and accurate determination of porcine carcass grades at abattoirs has become important. Non-destructive, automated inspection methods have improved slaughter efficiency in abattoirs. Furthermore, the development of a calibration equation suitable for non-destructive inspection of domestic pig breeds may lead to rapid determination of pig carcass and more objective pork grading judgement. In order to increase the efficiency of pig slaughter, the correct estimation of the automated-method that can accommodate the existing pig carcass judgement should be made. In this study, the previously developed calibration equation was verified to confirm whether the estimated traits accord with the actual measured traits of pig carcass. A total of 1,069,019 pigs, to which the developed calibration equation, was applied were used in the study and the optimal estimated regression equation for actual measured two traits (backfat thickness and hot carcass weight) was proposed using the estimated traits. The accuracy of backfat thickness and hot carcass weight traits in the estimated regression models through stepwise regression analysis was 0.840 (R2) and 0.980 (R2), respectively. By comparing the actually measured traits with the estimated traits, we proposed optimal estimated regression equation for the two measured traits, which we expect will be a cornerstone for the Korean porcine carcass grading system.

Reliability Improvement of Offshore Structural Steel F690 Using Surface Crack Nondamaging Technology

  • Lee, Weon-Gu;Gu, Kyoung-Hee;Kim, Cheol-Su;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.327-335
    • /
    • 2021
  • Microcracks can rapidly grow and develop in high-strength steels used in offshore structures. It is important to render these microcracks harmless to ensure the safety and reliability of offshore structures. Here, the dependence of the aspect ratio (As) of the maximum depth of harmless crack (ahlm) was evaluated under three different conditions considering the threshold stress intensity factor (Δkth) and residual stress of offshore structural steel F690. The threshold stress intensity factor and fatigue limit of fatigue crack propagation, dependent on crack dimensions, were evaluated using Ando's equation, which considers the plastic behavior of fatigue and the stress ratio. ahlm by peening was analyzed using the relationship between Δkth obtained by Ando's equation and Δkth obtained by the sum of applied stress and residual stress. The plate specimen had a width 2W = 12 mm and thickness t = 20 mm, and four value of As were considered: 1.0, 0.6, 0.3, and 0.1. The ahlm was larger as the compressive residual stress distribution increased. Additionally, an increase in the values of As and Δkth(l) led to a larger ahlm. With a safety factor (N) of 2.0, the long-term safety and reliability of structures constructed using F690 can be secured with needle peening. It is necessary to apply a more sensitive non-destructive inspection technique as a non-destructive inspection method for crack detection could not be used to observe fatigue cracks that reduced the fatigue limit of smooth specimens by 50% in the three types of residual stresses considered. The usefulness of non-destructive inspection and non-damaging techniques was reviewed based on the relationship between ahlm, aNDI (minimum crack depth detectable in non-destructive inspection), acr N (crack depth that reduces the fatigue limit to 1/N), and As.

The Convergence Application Example of Non-destructive Inspection System (비파괴 검사 시스템의 융합 적용 사례)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • This development is for non-destructive machine using X-Ray source about detecting outline faults of below middle size products. The differentiation is product of research and development unspecialized small and medium-sized products using X-Ray light sources can check real time if the surface of an external fault of radiation dose reference, within the leakage. The speed control is possible by software solution. In addition, we're working on possibly block doors for worker safety and equipment at the same time that inner drive can be identified in the image. These principles, as a key enabler of the current inspection system such as the container is small to medium-sized parts - a long way from utilization level is possible. This research will give rise to major effects for other various non-destructive market industries except car-industry. The most important fact is that this developed non-destructive machine is controlled below $0.2micro-S{\mu}v$.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Non-destructive Inspection of Construction Joints of Concrete Structures Using the Radar and the Infrared Thermography Method (레이더법과 적외선법을 이용한 콘크리트 시공 이음부 공극의 비파괴검사)

  • Park, Seok-Kyun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.425-432
    • /
    • 2003
  • The joint treatment of concrete is one of the technical problems in concrete constructions. Joints created with concrete constructions result in serious weakness in the aspects of both structural and water-barrier function. The radar and the infrared thermography method have been used for the non-destructive inspection of several construction joints of concrete structures in this study. The advantages and limitations of these methods are investigated for non-destructive inspection on construction joints of concrete columns. It can be shown that the detecting precision of construction joints using these methods is improved if radar analysis is carried out with a simulation analysis. In case of the infrared thermography method, the shape of construction joints can be also detected when heating is performed before testing. As the result, it has been verified that the construction joints, difficult to be detected by visual inspection, could be inspected effectively in broad areas at short period of time when these two methods are applied.

A Study on Non Destructive Evaluation of the Steam Turbine L-0 Blades

  • Mizanur, Rahman Md.;Rezk, Osama;Ouma, Victor Otieno;Vaysidin, Saidov;Gomaa, M. Abdullatif;Jung, JaeCheon;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.59-71
    • /
    • 2016
  • The Nuclear and Fossil Steam Turbines record a considerable number of failures annually. Some of these failures reported are as result of blade failure. The failure of the L-0 blade in a Steam Turbine is one of the most reported blade failure in Nuclear and Fossil steam turbines. This paper seeks to identify the best Non Destructive Evaluation (NDE) method or methods to be used in the steam turbine L-0 blades inspection process. The development of systems engineering processes presents an opportunity to apply NDE inspection to the L-0 blades. This process apply computer modelling of the L-0 using ANSYS and by simulating the stresses experienced by the L-0 blade during operation it is possible to identify the most susceptible areas for crack formation and growth. The results from these models compared to industry data for validation. The analysis of these results used to predict the most probable failure location and failure modes. Therefore NDE inspection can be applied to these areas with greater degree of accuracy. This would be beneficial in the increasing the accuracy in the detection of cracks and hence save inspection time and the overall inspection cost. Furthermore, not only the location for crack formation and NDE inspection determined but also best the NDE inspection technique/techniques to be applied appropriately on the L-0 blade are prescribed.

Concrete Crack Detection Inside Finishing Materials Using Lock-in Thermography (위상 잠금 열화상 기법을 이용한 콘크리트 마감재 내부 균열 검출)

  • Myung-Hun Lee;Ukyong Woo;Hajin Choi;Jong-Chan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.30-38
    • /
    • 2023
  • As the number of old buildings subject to safety inspection increases, the burden on designated institutions and management entities that are responsible for safety management is increasing. Accordingly, when selecting buildings subject to safety inspection, appropriate safety inspection standards and appropriate technology are essential. The current safety inspection standards for old buildings give low scores when it is difficult to confirm damage such as cracks in structural members due to finishing materials. This causes the evaluation results to be underestimated regardless of the actual safety status of the structure, resulting in an increase in the number of aging buildings subject to safety inspection. Accordingly, this study proposed a thermal imaging technique, a non-destructive and non-contact inspection, to detect cracks inside finishing materials. A concrete specimen was produced to observe cracks inside the finishing material using a thermal imaging camera, and thermal image data was measured by exciting a heat source on the concrete surface and cracked area. As a result of the measurement, it was confirmed that it was possible to observe cracks inside the finishing material with a width of 0.3mm, 0.5mm, and 0.7mm, but it was difficult to determine the cracks due to uneven temperature distribution due to surface peeling and peeling of the wallpaper. Accordingly, as a result of performing data analysis by deriving the amplitude and phase difference of the thermal image data, clear crack measurement was possible for 0.5mm and 0.7mm cracks. Based on this study, we hope to increase the efficiency of field application and analysis through the development of technology using big data-based deep learning in the diagnosis of internal crack damage in finishing materials.

Estimating Compressive Strength of High Strength Concrerte by Ultrasonic Pulse Velocity Method (초음파속도법에 의한 고강도 콘크리트의 압축강도 추정에 관한 연구)

  • Lim, Seo-Hyung;Kang, Hyun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this study is to suggest the non-destructive equation for the estimation of concrete strength by ultrasonic pulse velocity at the Age of 28day compressive strength of $600{\sim}1000kg/cm^2$. For this purpose, selected test variables were water-hinder ratio, replacement ratio of silica fume, binder content, maximum size of coarse aggregate and sand-aggregate ratio. From the results, the average increase or decrease of ultrasonic pulse velocity is 61m/sec for each 1% of moisture content. And the correlation equation between the ultrasonic pulse velocity and the compressive strength of concrete is as follows. $F_c=896.3V_p-3514$ ($R^2$ = 0.81) where, $F_c$ : compressive strength($kgf/cm^2$), $V_p$ : ultrasonic velocity(km/sec).

  • PDF

An Experimental Study on Prediction of Compressive Strength of the In situ Mass Concrete with Fly-ash (플라이애쉬를 혼입한 현장타설 매스콘크리트의 압축강도 추정에 관한 실험적 연구)

  • Khil, Bae-Su;Chae, Young-Suk;Nam, Jae-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.163-169
    • /
    • 1999
  • The object of this study is to compare properties of massive fly-ash concrete with plain concrete. Two concrete mixtures comprising two batch each $1.0m^3$ in volume, were made from ready mixed concrete batch plant. The water-to-cementitious materials ratio was kept constant at 51.4%. Therefore, massive concrete specimen($W800{\times}D800{\times}H800mm$) was cast from ready mixed concrete to analyze history of temperature and core strength properties. Bleeding, time of slump loss and time of setting of the fresh concrete were measured. In order to estimate the properties of massive fly-ash concrete in hardened concrete, non-destructive tests such as rebound hardness, ultrasonic pulse velocity and maturity were performed and analyzed.

  • PDF

Ultrasonic Sensors for Steel Structure Inspection (강구조물(鋼構造物) 진단(診斷)을 위한 초음파(超音波) 센서)

  • Shin, Byoung-Churl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • The team mixed PbO, $ZrO_2$, $TiO_2$, $Nb_2O_5$ and $MnCO_3$, to make $Pb[(Zr_{0.54}\;Ti_{0.46})\;Nb_{0.005}]O_3+4%MnCO_3$. The electroded PZT ceramics were poled by 3 kV/mm at $110^{\circ}C$ for 600 s. We assembled the 0.4mm thick PZT slices into ultrasonic transducers. Central frequency of the probe is 5 MHz, which is proper to the thickness gauge for steel pipes and for flaw detector. The probe can detect a disk shape defect of 1mm diameter at 15cm deep in steel block. The new probe's Fresnel zone that the ultrasonic beam do not broaden is 13mm. Over the Fresnel zone, the ultrasonic beam spreads. Half of the beam spread angle of the probe is $4.3^{\circ}-4.6^{\circ}$. This probe can be used for the ultrasonic transducers for non-destructive testing of steel bridges.

  • PDF