• Title/Summary/Keyword: non-woven fabric

Search Result 149, Processing Time 0.029 seconds

The Characteristics of Attached Textiles on the Remains of Shimchun-ri and Moonsan-ri Tombs (수착직물의 분석을 통한 심천리와 문산리고분군 직물의 특성)

  • Park, Yoon-Mee;Jeong, Bok-Nam
    • Fashion & Textile Research Journal
    • /
    • v.9 no.2
    • /
    • pp.243-248
    • /
    • 2007
  • This study is about the fabric attached to the relics excavated from the Shimchun-ri tomb of the 4th century and the Moonsan-ri tombs of the 5th century. We studied 5 pieces of fabric from the Shimchun-ri tomb: one piece was silk and the other four pieces were hemp. We were able to observe 8 pieces from the four tombs in Moonsan-ri, All of them except one ramie were silk. The two kinds of bast fiber found in the tombs of Shimchun-ri and Moonsan-ri were hemp and ramie, and they were found to be plain woven with S-twist thread which thickness is uneven. The density was more fine compared to the hemps found in the Kaya or Shinra tombs of the similar era. All of the silk textiles found in the Shimchun-ri and Moonsan-ri tombs used non-twisted thread, and were plain woven. Also, we found degummed and raw silk from the tombs. The average density of the silk textiles from these tombs are similar to other areas of the same time, and studies show that they used non-twisted thread in plain woven silk found in other tombs. Therefore, we can conclude that they usually used non-twisted thread when producing silk textiles.

Detoxification Properties of Guanidinylated Polyethyleneimine Treated Polypropylene Non-woven Fabric Against Chemical Warfare Agents (구아니딘화 폴리에틸렌이민이 처리된 폴리프로필렌 부직포의 군사용 화학 작용제 제독 특성)

  • Kim, Jiyun;Kwon, Woong;Kim, Changkyu;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study aims to prepare the fabric with detoxification properties against chemical warfare agent by the simple treatment. For this purpose, polypropylene non-woven fabric(PP) was treated with polyethyleneimine(PEI) and guanidinylated PEI and detoxification properties of the guanidinylated PEI treated PP were evaluated using diisopropylfluorophosphate(DFP), as a chemical warfare agent simulant, and compared with the untreated and PEI treated PP. The half-lives of DFP on guanidinylated PEI treated PP and untreated PP were 334 min and 714 min, respectively. The half-life of DFP with guanidinylated PEI treated PP was 53.22% shorter than with untreated PP. This result shows that guanidine group in guanidinylated PEI treated PP was acted as a base catalyst for hydrolysis of DFP and decreased half-life of DFP. Therefore, it is expected that guanidinylated PEI treatment can be an simple pathway to prepare the detoxification fabric material for protective clothing against chemical warfare agents.

Evaluation of particulate removal in slow sand filtration processes (완속여과 공정에서 전처리 공정 도입에 따른 입자제거 효율평가)

  • Kim, Seong-Su;Bae, Chul-Ho;Park, No-Suk;Kang, Suk-Hyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.461-466
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. In this study, the effect of filtration velocity and dirty skin (Schmutzdecke) was evaluated on the performance of turbidity removal. Also, removal characteristics of particulate were investigated in the case of the usage of non-woven fabric on the surface of sand and the application of PCF as pretreatment process. Comparative column tests were carried out for the various operation condition. From the result of column tests, filtration velocity had little effect on the turbidity removal rate. The formation of algal biofilm on the surface of media is helpful in turbidity removal, while non-woven fabric is not as effective as expected. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

Evaluation on the Basic Properties of Polyurethane Composite Sheet Reinforced with Non-Woven Fabric (면섬유가 보강된 폴리우레탄계 복합시트의 기초 물성 평가)

  • Kim, Ji-Hyun;Do, Seung-Bae;Park, Jeong-Won;Nam, Gee-Yoong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.238-239
    • /
    • 2017
  • Waterproofing is a very important process in terms of durability of buildings. The materials used for waterproofing work to protect the concrete structure from external deterioration factors. In particular, the waterproofing materials applied to the exterior of the concrete structure have various problems due to changes in the external environment and variables in the construction process. The waterproof layer is repeatedly dried and shrunk according to changes in the external moisture environment, and the surface may be deteriorated due to exposure to long-term sunlight. In the case of the roof waterproofing in the structure, the waterproof layer which does not have a sufficient curing period shows much swelling and floating phenomenon. These defects, such as swelling and lifting, account for most of the defects that occur in the waterproof layer of the concrete slabs. Generally, it is difficult to expect the same level of performance as the initial state even if the waterproofing work is repaired when a defect occurs. Therefore, it is possible to reduce the defects of the waterproof layer such as swelling and lifting by forming a waterproof layer which can be integrated with the concrete surface by using a polyurethane type waterproofing material having a relatively low defective ratio compared to other waterproofing materials. So in this study, the basic properties of polyurethane waterproof sheet reinforced with non-woven fabric are investigated in order to understand field applicability.

  • PDF

Superhydrophobic nanostructured non-woven fabric using plasma modification

  • Shin, Bong-Su;Lee, Kwang-Reoul;Kim, Ho-Young;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.320-320
    • /
    • 2011
  • We describe fabrication of superhydrophobic surface on non-woven fabric (NWF) having nano-hairy structures and a hydrophobic surface coating. Oxygen plasma was irradiated on NWF for nano-texuring and a precursor of HMDSO (Hexamethydisiloxane) was introduced as a surface chemical modification for obtaining superhydrophobicity using 13.56 MHz radio frequency-Plasma Enhanced Chemical Vapor Deposition (rf-PECVD). O2 plasma treatment time was varied from 1 min to 60 min at a bias voltage of 400V, which fabricated pillar-like structures with diameter of 30 nm and height of 150 nm on NWF. Subsequently, hydrophobic coating using hexamethyldisiloxane vapor was deposited with 10 nm thickness on NWF substrate at a bias voltage of 400 V. We evaluate superhydrophobicity of the modified NWF with sessile drop using goniometer and high speed camera, in which aspect ratio of nanohairy structures, contact angle and contact angle hysteresis of the surfaces were measured. With the increase of aspect ratio, the wetting angle increased from $103^{\circ}$ to $163^{\circ}$, and the contact angle hysteresis decreased dramatically below $5^{\circ}$. In addition, we had conducted experiment for nucleation and condensation of water via E-SEM. During increasing vapor pressure inside E-SEM from 3.7 Torr to over 6 Torr which is beyond saturation point at $2^{\circ}C$, we observed condensation of water droplet on the superhydropobic NWF. While the condensation of water on oxygen plasma treated NWF (superhydrophilic) occurred easily and rapidly, superhydrophobic NWF which was fabricated by oxygen and HMDSO was hardly wet even under supersaturation condition. From the result of wetting experiment and water condensation via E-SEM, it is confirmed that superhydrophobic NWF shows the grate water repellent abilities.

  • PDF

Study on Sludge Thickening with Mesh is Used as Filtration Msdia (여과분리재를 이용한 슬러지 농축에 관한 연구)

  • Kim, Boo-Gil;Park, Min-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.945-949
    • /
    • 2006
  • For a membrane bio-reactor, it is possible to fillet and separate activated sludge and effluent by head loss of centimeters, if non-woven fabric material is used as titration media. However, if non-woven fabric material is used to thicken high-concentration sludge, excessive sludge attachment causes the rapid decrease of flux. Mesh with fore sizes of $100{\mu}m,\;150{\mu}m,\;and\;200{\mu}m$ allows for easy separation of attached sludge. This study examined the possibility of mesh as filtration media. Existing close-flow filtration process, which requires maintaining sludge movement, makes It difficult to obtain high thickening rate. With a view of complementing this weakness, this study has made an experimental examination on how high-concentration sludge (about 3,000mg/L to 10,000mg/L) will be filtered and thickened when mesh module is submersed in the bio-reactor. Effluent flowed from the bottom of the bio-reactor by head loss of 65cm. In case of pore size of $100{\mu}m$, SS showed high recovery of 80% to 96%; therefore, it has been decided that mesh can be used as filtration media. Filtration lasted for more than 9 hours, until sludge with 9,000mg/L in MLSS concentration was thickened 9 times as dense. In the range from 3,610mg/L to 9,060mg/L in MLSS concentration, it was possible to obtain effluent with less than 2mg/L in MLSS concentration within 10 minutes.

Pilot Scale Test of Non-woven Fabric Filter Separation Activated Sludge Process for Practical Application on Domestic Wastewater Reclamation (파일럿 규모의 침지식 부직포 여재 활성슬러지 공정의 시스템 처리 특성에 관한 연구)

  • Lee, Sang-Woo;Choi, Chul-hoi;Park, Young-mi;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.289-294
    • /
    • 2006
  • A pilot scale non-woven fabric filter separation activated sludge system was investigated for practical application on domestic wastewater reclamation and reuse. The system was operated in A/O (Anaerobic/Oxic) process with submerged filter module in the aerobic compartment. In the test of two types of filter materials ($70g/m^2$ and $35g/m^2$), the initial flux (0.42m/d) could be maintained for about three months by regular air backwashing of $70g/m^2$ filter at 0.3m water head. The removal efficiency of organic matter by the system was BOD 93.3%, CODcr 96.3%, SS 96.7%. The effluent quality was 7.8mg/L, 12mg/L and 5mg/L for BOD, CODcr and SS, respectively. The water quality was enough to meet a standard for domestic reuse without human contact. T-N removal efficiency was 49.9% at internal recycle rate 2Q and C/N ratio 3.3. The removal efficiency of T-P was 50% with average effluent concentration, 2.6mg/L.

Growth and Cut-Flower Productivity of Spray Rose as Affected by Shading Method during High Temperature Period (차광방법에 따른 고온기 절화용 스프레이 장미의 생장 및 절화 생산성)

  • Cheong, Dong-Chun;Lee, Jin-Jae;Choi, Chang-Hak;Song, Young-Ju;Kim, Hee-Jun;Jeong, Jong-Sung
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.227-232
    • /
    • 2015
  • This experiment was carried out to investigate the effects of shading materials (aluminum specific-shading screen and polypropylene non-woven fabric) and shading ratio (50% and 70%) on climatic changes, cut-flower quality, and yield of spray rose cultivars for export during high temperature periods. The daily cumulative solar radiations were higher with the aluminum specific-shading screen, especially with 50% shading compared to polypropylene non-woven fabric. Air temperature and root zone temperature within rockwool media greatly decreased with the aluminum specific-shading screen, but relative air humidity was not different among shading methods. Chlorophyll contents (SPAD values) were slightly higher with aluminum-specific shading screen than with polypropylene non-woven fabric, and were higher with 50% than with 70% aluminum specific-shading screen. Except for 'Lovely Lydia', marketable and exportable yields of all cultivars were higher with 50% than with 70% aluminum shading treatment. In addition, flowers talk length, stem diameter, number of node and 7ea-leaflet, and floret number tended to be better with aluminum specific-shading screen. Flower stalk length was higher with 70% than with 50% aluminum shading treatment. Chromaticity of petals slightly increased, and vase life was 0.5-2.5 days longer for each cultivar with aluminum specific-shading screen than with polypropylene non-woven fabric.

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.

Agronomic Characteristics as Affected by Polyethlene Film Mulching and Sowing Date in Vegetable Perilla (잎들깨 멀칭재배 및 파종기에 따른 생육특성)

  • 김동관;정찬식;천상욱;국용인;김명석;방극필
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.184-187
    • /
    • 2004
  • In case of a semi-forcing culture for vegetable perilla, the following research results on the effect of black polyethylene mulching, the optimum sowing season, and the seedling stand improvement method were drawn. Soil temperature was higher and the emergence was faster in a black polyethylene mulching culture than in a non-mulching culture. However, the mature was late, the main stem were larger, and the seed yield, as well as the leaf yield, was greater in a mulching culture than in a non-mulching culture. Considering growth and chilling injury, the stable sowing season of vegetable perilla was judged to be the early in January. The covering materials for improvement of the seedling stand can be a non-woven fabric and hyaline polyethylene. However, the non-woven fabric seemed to be quite suitable in view of the stability and convenience of control after the emergence of perilla.