• 제목/요약/키워드: non-tubular

검색결과 119건 처리시간 0.028초

원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향 (Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

로터리 드로우 벤더를 이용한 타원형 튜브의 유한요소 벤딩 해석 (Finite Element Bending Analysis of Oval Tubes Using Rotary Draw Bender for Hydroforming Applications)

  • 이호국
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2005
  • In manufacturing automotive parts, such as engine cradles, frame rails, subframes, cross-members, and other parts from circular tubes, pre-bending and pre-forming operations are often required prior to the subsequent tubular hydroforming process. During some pre-forming operations, the cross section of a bent circular tube is crushed into an oval-like shape to ensure proper geometry and sufficient clearance in the hydroforming dies. For such applications, the use of oval Instead of circular tubes could be an effective means of eliminating the pre-forming step. The oval tube could also be produced with less thinning and with less strain on the outside of the bend when controlled by a booster system without the use of mandrel. Hence, the understanding of the issues that occur in the bending of oval tubes is worthy of Investigation. This paper presents parametric studies on the bending of oval tubes without a mandrel. The finite element modeling technique is used to examine the deformation characteristics for both circular and oval tubes. In the simulations, the bending process parameters of bend radius, aspect ratio of the tube ovalness, and tube wall thickness are varied. Observations are made to obtain a hoop-buckle limit diagram in terms of a non-dimensional shape degradation factor. Suggestions based upon developed criteria are made on the acceptability of bend tubes suitable for hydroforming applications without the need ofa pre-forming step or the used of a mandrel.

  • PDF

철도하부 가도교 설치에 대한 JES공법 (Joint Element Structure Method on the Subway Box Structure unere Railroad)

  • 피태희;조국환;사공명
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.973-981
    • /
    • 2008
  • This document presents the JES(Joint Element Structure) method that has been adopted for the firs time in our country for the construction of the structure crossing under the railroad without open excavation. Front Jacking Method, Tubular Roof Construction Method, New Tubular Roof Method and Joint Element Structure Method are commonly used for the construction of structures crossing under the railroad. JES Method, frequently used in Japan recently, is a new method to construct the structures crossing under the railroad in a safe manner and in a relatively short period of time by utilizing the steel elements with the joints through which the load in the vertical angle to the axial direction is transferred to the next element. The elements are tied to each other through the joints to form the permanent walls of a Rahmen structure under the road without open excavation and without limitation to the length in a convenient way. Through the case study in the project of a Subway Box Culvert Improvement for the Gyeonguiseon Railroad in front of Yonsei University using the JES Method, the cost and period of construction in various types of soil is investigated compared to the Front Jacking Method. Furthermore, by analyzing the results of instrumentation measurements carried out throughout the construction, comparison between the actual displacement in the ground and the predicted displacement in the design is made to provide the considerations to be counted for the design. In conclusion, comparison in the field of economic feasibility, constructability and safety between the JES Method and Front Jacking Method, which is most frequently adopted in our country at present, is made to present the JES Method as a new alternative for the non-open excavation construction method for the structures crossing under the railway.

  • PDF

인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가 (Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange-)

  • 강현식;문태섭
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.525-536
    • /
    • 1998
  • 본 연구는 콘크리트 충전형 원형강관에 H형강보를 사용한 접합부의 내력을 항복선이론을 이용하여 구하였다. 3가지 유형의 항복선 모델이 제시되어 있다. 첫째는 단순화된 모델이며, 두 번째는 x와 kx로 수정된 모델이다. 나머지 하나는 모리타모델이다. 각 경우의 이론치와 실험치가 비교되었으며, 궁극적으로는 콘크리트 충전 원형강관기둥 접합부의 보강법을 연구하여 다이아프램이 없는 콘크리트 충전강관 기둥-H형강보 접합부의 개발을 위한 기초자료를 제시하는 것을 목적으로 하고 있다.

  • PDF

Morphologcal and Ultrastructural Study on the Prostate of a Land Snail Nesiohelix samarangae, a Stylommatophoran Pulmonate

  • Kang, Se-Won;Jo, Yong-Hun;Han, Yeon-Soo;Jeong, Kye-Heon;Lee, Yong-Seok
    • 한국패류학회지
    • /
    • 제26권1호
    • /
    • pp.79-84
    • /
    • 2010
  • A morphological and ultrastructural study on the prostate of a land snail Nesiohelix samarangae was conducted. The prostate of Nesiohelix samarangae is a tubular gland connected with the large hermaphrodite duct. The lining of the prostate tubules possesses two distinct types of epithelial cells, one secretory and the other non-secretory. The secretory cells contained numerous secretory granules in various sizes and electron density. Most of the secretory granules showed light electron density but some of them showed heavy density. The ciliated cells were non-secreting cells situated only toward the lumen of the tubules and appeared as ordinary epithelial lining cells. The ciliated cells of the epithelium extensively interdigitate with each other and their apical surfaces had numerous cilia and microvilli. The bases of the ciliated cells did not reach the basal region of the secretory cells.

Deformation behaviours of SS304 tubes in pulsating hydroforming processes

  • Yang, Lianfa;Wang, Ninghua;He, Yulin
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.91-110
    • /
    • 2016
  • Tube hydroforming (THF) under pulsating hydraulic pressures is a novel technique that applies pulsating hydraulic pressures that are periodically increased to deform tubular materials. The deformation behaviours of tubes in pulsating THF may differ compared to those in conventional non-pulsating THF due to the pulsating hydraulic pressures. The equivalent stress-strain relationship of metal materials is an ideal way to describe the deformation behaviours of the materials in plastic deformation. In this paper, the equivalent stress-strain relationships of SS304 tubes in pulsating hydroforming are determined based on experiments and simulation of free hydraulic bulging (FHB), and compared with those of SS304 tubes in non-pulsating THF and uniaxial tensile tests (UTT). The effect of the pulsation parameters, including amplitude and frequency, on the equivalent stress-strain relationships is investigated to reveal the plastic deformation behaviours of tubes in pulsating hydroforming. The results show that the deformation behaviours of tubes in pulsating hydroforming can be well described by the equivalent stress-stain relationship obtained by the proposed method. The amplitude and frequency of pulsating hydraulic pressure have distinct effects on the equivalent stress-strain relationships-the equivalent stress becomes augmented and the formability is enhanced with the increase of the pulsation amplitude and frequency.

Phylogenetic relationships of Rosenvingea (Scytosiphonaceae, Phaeophyceae) from Vietnam based on cox3 and psaA sequences

  • Lee, Kyung Min;Hong, Dang Diem;Boo, Sung Min
    • ALGAE
    • /
    • 제29권4호
    • /
    • pp.289-297
    • /
    • 2014
  • The taxonomic status and the distribution of Rosenvingea species need attention because of the difficulties in morphological identification in the laboratory as well as in the field. We analyzed mitochondrial cox3 and plastid psaA gene sequences from Rosenvingea species from Vietnam, Mexico and Panama in combination with morphological examinations. Our results confirmed the occurrence of R. intricata and R. orientalis in Vietnam. R. intricata formed dense decumbent mats with many flat branches, often inter-adhesive, and was up to 5 cm in diameter. R. orientalis thalli were up to 18 cm long with narrow (less than 2 mm in width) tubular to compressed fronds. Both cox3 and psaA phylogenies revealed the non-monophyly of the genus Rosenvingea, as reported previously for other scytosiphonacean genera.

원통형 선형 유도전동기의 2차측 처짐에 관한 연구 (A Study on droop of Tubular Type Linear Induction Motor)

  • 정상용;천장성;임정필;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.28-30
    • /
    • 1998
  • In the case of long secondary (applied in long distance), as it is established horizontal, the defects of droop arises resulting damage of entire system. Actually, it is difficult to expect reasonable characteristics and desirable operating in that case. This paper is about numerical analysis of secondary droop, non-symmetric and position displacement problems. In the base of this paper, the correction of mechanical difficulties in practical manufacturing and optimal design of TLIM considering these aspects can be progressed successively.

  • PDF

Investigation on circular and octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • R, Manigandan;Kumar, Manoj;Shedge, Hrishikesh N.
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.141-154
    • /
    • 2022
  • This paper describes the experimental and numerical investigation on circular and octagonal CFDST short columns under concentric loading to study their responses to various internal circular steel tube sizes by the constant cross-sectional dimensions of the external circular and octagonal steel tube. The non-linear finite element analysis of circular and octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial behavior influenced by the various sizes of internal circular steel tubes. The study shows that the axial compressive strength and ductility of circular and octagonal CFDST columns were significantly influenced by inner steel tubes with the strengths of constituent materials.

Tests and numerical analysis on octagonal concrete-filled double skinned steel tubular short columns under axial compression

  • Manigandan R
    • Steel and Composite Structures
    • /
    • 제50권5호
    • /
    • pp.499-513
    • /
    • 2024
  • This paper describes the experimental and numerical investigations of octagonal Concrete-Filled Double Skinned Steel Tube (CFDST) short columns under the influence of various internal sizes of the circular and square steel tubes, with constant cross-sectional dimensions of the external octagonal steel tube under concentric loading. The non-linear finite element analysis of octagonal CFDST columns was executed using the ABAQUS to forecast and compare the axial compression behavior influenced by the various sizes of internal circular and square steel tubes. The study shows that the axial compressive strength and ductility of octagonal CFDST columns were significantly influenced by various internal dimensions of the circular and square steel tubes with the strengths of constituent materials.