• Title/Summary/Keyword: non-toxic materials

Search Result 147, Processing Time 0.025 seconds

Examination of Effectiveness of Existing Wound Dressings (현재 사용 중인 상처도포제의 유효성 검정)

  • Lee, Kyu Hwa;Lee, Yong-Hwan;Song, Hyeon-Seong;Lee, Joung Goo;Yoo, Jaeryong;Ahn, Saekyul
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.4
    • /
    • pp.505-509
    • /
    • 2016
  • This study was conducted to examine the effectiveness of various dressing materials applied to tree wounds in Korea. Significantly higher wound closure rates than those of controls were found when thiophanatemethyl paste (Topsin Paste$^{(R)}$) was applied to Ginkgo biloba, Zelkova serrata, and Prunus yedoensis; lanolin to Z. serrata and P. yedoensis; and tebuconazole paste (Silvacur$^{(R)}$) to P. yedoensis. However, significantly lower wound closure rates than those of controls were found when petroleum jelly (Vaseline$^{(R)}$) was applied to G. biloba, Z. serrata, and P. yedoensis. It was noted that the wounds of Z. serrata and P. yedoensis treated with petroleum jelly expanded due to the death of cambium located at the edge of the wounds. Wound closure rates applied with adhesive - non-toxic to human body (Okong bond$^{(R)}$) were also significantly lower than those of controls in Z. serrata. Pinus densiflora showed no reaction to any experimental wound dressing because of resin secreted from the exposed cambium.

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Efficiency Estimation of Toxicity Free Eire Resistance Cable

  • Yoon, Hun-Ju;Hon, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.34-38
    • /
    • 2002
  • In this paper, efficiency estimation of toxicity fee fire resistance cable experiments was measured smoke density of toxicity free fire resistance polyolefin insulation material and electric field dependence of tree shape in low density polyethylene (LDPE). One of the most serious causes of failure in high-voltage cables, can be an electrical discharge across an internal gab or void in the insulating material. Treeing due to partial discharge is one of the main causes of breakdown in the insulating materials and reduction of the insulation life. Therefore the necessity for establishing a method to diagnose the aging of insulation materials and to predict the breakdown of insulation and research of the fire resistance character has become important. First, we have studied on electric field dependence of tree shape in LDPE about treeing phenomena occurring on the high electrical field. Second, the measurement method is the attenuation quantity of irradiation by smoke accumulating with in a closed chamber due to non-flaming heat decomposition and flaming combustion. A main cause of fire-growth and generating toxic gas when, it bums, should be dealt with great care in life. safety design. The fire gases were occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC, which has high content of carbon in chemical compound.

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Microstructure and Mechanical Properties of Ti-35Nb-7Zr-XCPP Biomaterials Fabricated by Rapid Sintering

  • Woo, Kee-Do;Park, Sang-Hoon;Kim, Ji-Young;Kim, Sang-Mi;Lee, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.150-154
    • /
    • 2012
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy have been widely used as alternative to bone due to its excellent biocompatibility, although it still has many problems such as high elastic modulus and toxicity. Therefore, biomaterials with low elastic modulus and non toxic characteristics have to be developed. A novel ${\beta}$ Ti-35wt%Nb-7wt%Zr-Calcium pyrophosphate (CPP) composite that is a biocompatible alloy without elemental Al or V was fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70 MPa using high energy mechanical milled (HEMM) powder. The microstructure and phases of the milled powders and the sintered specimens were studied using SEM, TEM, and XRD. Ti-35wt%Nb-7wt%Zr alloy was transformed from ${\alpha}$ phase to ${\beta}$ phase in the 4h-milled powder by sintering. The sintered specimen using the 4h-milled powder showed that all the elements were distributed very homogeneously and had higher density and hardness. ${\beta}$ Ti alloy-CPP composite, which has nanometer particles, was fabricated by SPS using HEMMed powder. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The Vickers hardness of the composites increases with the increase of the milling time and the addition of CPP. The biocompatibility of the Ti-Nb-Zr alloys was improved by addition of CPP.

Evaluation of Surface Macrostructure and Mechanical Properties of Porous Surface Ti-HA Biomaterial Fabricated by a Leaching Process (Leaching 공정으로 제조한 표면 다 기공 Ti-HA 생체재료의 표면 조직 및 기계적 성질의 평가)

  • Woo, Kee Do;Kang, Duck Soo;Moon, Min Seok;Kim, Sang Hyuk;Liu, Zhiguang;Omran, Abdel-Nasser
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • Ti-6Al-4V ELI alloy, which is commonly used as a biomaterial, is associated with a high elastic modulus and poor biocompatibility. This alloy presents a variety of problems on several areas. Therefore, the development of good non-toxic biocompatible biomaterials with a low elastic modulus is necessary. Particularly, hydroxyapatite (HA) is an attractive material for human tissue implantation. This material is widely used as artificial bone due to its good biocompatibility and similar composition to human bone. Many scientists have studied the fabrication of HA as a biomaterial. However, applications of bulk HA compact are hindered by the low strength of HA when it is sintered. Therefore, HA has been coated on Ti or Ti alloy to facilitate good bonding between tissue and the HA surface. However, there are many problems when doing this, such as the low bonding strength between HA and Ti due to the different thermal expansion coefficients and mechanical properties. In this study, a Ti-HA composite with a porous surface was successfully fabricated by pulse current activated sintering (PCAS) and a subsequent leaching process.

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

Current Status and Research Trend of the Green Technology for Atmospheric Environment (대기환경 개선을 위한 녹색기술 현황과 연구동향)

  • Kim, Daekeun;Park, Sung-Kyu;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • Green technology encompasses a growing group of methods and materials, from techniques for generating energy and alternative resources to non-toxic cleaning products. Green technology is expected to solve current problems in atmospheric environment such as climate changes due to green house gases and hazardous air pollutants. This paper provides a review on the status of green technology and policy guidelines in Korea as well as the green technology for air pollutants. It presents the R&D projects and future direction in atmospheric environment, and the green technology in mobile source air pollution. Emerging green technology contributes to sustainable growth and development of atmospheric environmental industry for better air quality.

Broad Spectrum Antibacterial Activity of Allium cepa, Allium roseum, Trigonella foenum graecum and Curcuma domestica

  • Omoloso, A.D.;Vagi, J.K.
    • Natural Product Sciences
    • /
    • v.7 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • In many parts of the world Allium cepa, Allium roseum, Trigonella foenum graecum and Curcuma domestica are extensively used as food and are popular in herbal medicine. The four were screened against 26 pathogens and all exhibited broad-spectrum anti-bacterial activity. The aqueous as well as fractionated methanol extract of Allium cepa and A. roseum demonstrated broader level of activity against most of the organisms. On the other hand the unfractionated methanol extracts as well as the fractions of both Trigonella foenum graecum and Curcuma domestica showed broad spectrum of activity. Fractionation was found to improve their level of activity. In both cases the ethyl acetate fractions exhibited higher level of activity. All the materials tested were inactive against any of the four moulds. Allium cepa, Allium roseum, Trigonella foenum graecum and Curcuma domestica are proposed as non toxic, safe, broad spectrum antibacterial agents.

  • PDF

Design and Synthesis of Novel Rhodamine-based Chemosensor Probe Toward Cu2+ Cation

  • Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Nowdays, fluorescent rhodamine chemosensors have attracted a worldwide interest due to its ability to selectively detect heavy and transition metal cations. Due to the importance in environmental and biological toxic effects, the developments of fluorescent chemosensors have been received considerable attention in recent. Especially, a rhodamine-based chemosensor probes have been proved to be useful by exhibiting the efficient "off-on" fluorescence switching toward selected metal cations. This fluorophore can undergo the transformation from non-fluorescent and colorless spirolactam derivative to fluorescent ring-open form. In this study, a new fluorescent chemosensor was synthesized using rhodamine B through two-step procedures, and its selectivity and related optical property were characterized. Selectivity and sensitivity was found toward $Cu^{2+}$ guest molecules and then related optical properties of rhodamine B based fluorescent chemosensor compound were characterized using discussed. In addition, computational calculation was used to determine the HOMO/LUMO values.