• 제목/요약/키워드: non-toxic materials

검색결과 147건 처리시간 0.027초

인체에 유해하지 않은 원소를 사용한 Ti 계 벌크 비정질 합금 개발 (Development of Ti-based Bulk Metallic Glasses with Non-toxic Elements)

  • 이철규;이승훈
    • 한국주조공학회지
    • /
    • 제32권4호
    • /
    • pp.177-180
    • /
    • 2012
  • Ti-based bulk metallic glasses with high glass forming ability were developed through a systematic alloy design technique. The main alloy design strategy was the selection of alloying elements that may not be toxic in the human body. The $Ti_{45.0}Cu_{40.1}Zr_{12.7}Si_{2.2}$ alloy could be cast into an amorphous rod with the diameter of 3 mm by a suction casting technique using Cu mold. The compressive strength of the amorphous rod was measured as 1826 MPa. Since the Ti-based amorphous alloys consist of non-toxic elements, they can be widely used as bio-materials and eco-materials with unique and beneficial properties.

거주자 안전을 고려한 친환경 건축재료 선정 시스템개발 (Development on the Selection of Green Construction Materials for Residental Safety)

  • 송혁;정우양
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.63-70
    • /
    • 2005
  • It has been used so many kinds of architectural materials and interior products in current building construction, and use of composite architectural materials is increasing with the development of chemical technology. As the green architecture has become the center of public interest, much effort is conducted in advanced countries on the LCA point of view, such as restriction of architectural materials that emitting pollution substances, developing of Non-Toxic architectural materials, and recycling of used materials, etc. with the cooperation of related organizations, material manufacture companies, and construction companies. Because the kinds of materials to be used in building constructions are so various, there might be some possibility of personal and subjective choice at the time of materials selection resulting the missing the requirements of building components and the choice of harmful materials to human. One way to resolve the material problem is to present the green architectural materials which coincide with the quality performance at service and not harmful to man and nature. At this point of view, this study aims to develop the material classification model by investigating the major labelling system about green architectural materials in both domestic and abroad and to implement an efficient material selection system by making a powerful database of environmental standard and quality basis of building requirements.

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • 문주호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

오염 토양의 phytoremediation (Phytoremediation of Contaminated Soils)

  • Young-Gyun Cho;Sung-Keun Rhee;Sung-Taik Lee
    • 한국토양환경학회지
    • /
    • 제2권1호
    • /
    • pp.3-12
    • /
    • 1997
  • 식물을 이용하여 오염된 토양에 존재하는 유기 및 무기 오염 물질을 제거하는 phytoremediation은 환경 정화를 위한 새로운 기술이다. 독성 중금속, 방사성 핵종 및 독성 유기 오염 물질을 제거하는데 이용될 수 있는 phytoremediation 에는 다음의 세가지 방법이 있다. (1) phytoextraction: 독성 중금속이나 방사성 핵종과 같은 무기 오염 물질을 수화가능한 부분에 축적하는 식물체를 이용하여 정화하는 방법, (2) phytodegradation: 독성 물질을 분해하는 효소를 분비하는 식물체를 이용하거나 효소를 생산해내는 미생물과 밀접한 연관이 있는 식물체를 이용하여 독성 물질을 무독성 물질로 전환하는 방법, 그리고 (3) phytostabilization: 독성 오염 물질을 용존 상태에서 침전 흑은 식물체의 조직이나 주변 토양 matrix에 흡착시켜 안정화시키는 방법이다. 이 기술은 기존의 어떤 처리 방법보다 더 효과적이고 경제적이다.

  • PDF

중성자방사화분석에 의한 Algae중의 독성미량원소의 정량 및 실험실간 비교검증 (Data intercomparison and determination of toxic and trace elements in Algae using Instrumental Neutron Activation Analysis)

  • 정용삼;문종화;박광원;이길용;윤윤열
    • 분석과학
    • /
    • 제12권4호
    • /
    • pp.346-353
    • /
    • 1999
  • For the non-destructive multi-elemental analysis of environmental and biological materials, instrumental neutron activation analysis (INAA) was applied for the determination of toxic and trace elements in a set of three Algae samples provided by the International Atomic Energy Agency (IAEA). The analytical quality control was evaluated by comparing the analytical results of two standard reference materials of the National Institute of Standards and Technology (NIST); Oyster Tissue (SRM 1566a) and Citrus Leaves (SRM 1572). According to given analytical procedure, the concentration of 15-25 elements including spiked elements such as As, Cd, Cr and Hg in Algae samples were determined. To identify and validate these results, a data intercomparison program using more than 35 analytical methods in 150 laboratories was carried out and the estimated statistical data are summarized. Result of INAA is favorable, therefore, it is illustrated that can be applied for routine analysis of essential and toxic elements in algae samples as well as analytical quality assurance.

  • PDF

가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구 (A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE)

  • 김태인
    • 대한치과보철학회지
    • /
    • 제36권5호
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

Synthesis and Characterization of CZTS film deposited by Chemical Bath Deposition method

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.99.1-99.1
    • /
    • 2012
  • The thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4 - 1.6 eV and a large absorption coefficient of ~104 $cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative aqueous chemical approach based on chemical bath deposition (CBD) method for large area deposition of CZTS thin films. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and some factors like triethanolamine, ammonia, temperature which strongly affect on the morphology of CZTS film.

  • PDF

Manufacturing Polymer/clay Nanocomposites Using a Supercritical Fluid Process

  • Jung, Hyun-Taek;Yoon, Ho-Gyu;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.63-65
    • /
    • 2008
  • The increased interest in reducing the environmental effects caused by releasing organic compounds and aqueous waste has motivated the development of polymeric materials in supercritical fluids. Recently, supercritical fluids have been used in material synthesis and processing because of their special properties, such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive because it is non-toxic, non-flammable, and has moderate critical temperature and critical pressure values. Supercritical carbon dioxide can also swell most polymers. In this study, we prepared polymer/clay nanocomposites using supercritical fluids. Cloisites 10A, 15A, 25A, and 30B used in this study are montmorillonites modified with a quaternary ammonium salt. The nanocomposites of polymer/clay were characterized by X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry.