• Title/Summary/Keyword: non-stoichiometric

Search Result 100, Processing Time 0.03 seconds

Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant (해수담수화플랜트에서 가스 하이드레이트 공정 도입을 통한 역삼투 공정의 에너지 절감 효과)

  • Kim, Suhan;Lim, Jun-Heok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Gas hydrate (GH) process is a new desalination technology, where GH is a non- stoichiometric crystalline inclusion compounds formed by water and a number of gas molecules. Seawater GH is produced in a low temperature and a high pressure condition and they are separated from the concentrated seawater. The drawback of the GH process so far is that salt contents contained in its product does not meet the fresh water quality standard. This means that the GH process is not a standalone process for seawater desalination and it needs the help of other desalting process like reverse osmosis (RO). The objective of this study is to investigate the effect of GH process on energy saving for RO process in seawater desalination. The GH product water quality data, which were obtained from a literature, were used as input data for RO process simulation. The simulation results show that the energy saving effect by the GH process is in a range of 68 % to 81 %, which increases as the salt removal efficiency of the GH process increases. Boron (B) and total dissolved solids (TDS) concentrations of the final product of the hybrid process of GH and RO were also investigated through the RO process simulation to find relavant salt rejection efficiency of the GH process. In conclusion, the salt rejection efficiency of the GH process should exceed at least 78% in order to meet the product water quality standards and to increase the energy saving effect.

Dissolution Behavior of Plagioclase in HCl and KOH Solutions (염산과 수산화칼슘 수용액과의 반응에 의한 사장석의 용해 거동)

  • 현성필;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.71-81
    • /
    • 1996
  • Dissolution experiments were conducted to understand chemical nature of weathering of anorthosite from the Hadong area. Anorthosite and plagioclase from it were reacted with HCl or KOH solutions under various conditions concerning such as grain size, initial pH of solutions, and shaking Average composition of plagioclase used in the experiment was Na0.32Ca0.71Al1.71Si2.28O8.Under acidic conditions, solution pH increases rapidly in the initial stage and then gradually to reach palteau. Shaking agitates the reaction rate in the initial stage but does not affect after the system reached steady state. Ca and si concentrations show rapid increase and then gradual increase. Al concentration increases rapidly in the early stage and then decreases. Later decrease was interpreted as the precipitation of an Al-bearing material. Different dissolution rates of different constituents of plagioclase together the with precipitation of al-bearing material might be responsible for the non-stoichiometric dissolution of plagioclase.X-ray diffraction analyses on anorthosite before and after dissolution experiment show dissolution rates differ with different lattice planes of plagioclase. It suggests the crystallographic control on dissolution reaction. X-ray photoelectron spectroscopic result shows that the average composition of plagioclase surface reacted with HCL of initial pH 1.97 for 2000 hours is Na0.20Ca0.26Al1.7Si2.3O8. It means that Na- and Ca-depleted H-feldspar is developed without Al-depleted layer on the surface of plagioclase by reaction with HCl and that dissolution reaction takes place sparsely on the surface of plagioclase. Al and Si are dissolved preferentially over Ca from anorthosite powder in KHO solution. Reaction of acid-reacted anorthosite with KOH solution shows the same Si dissolution behavior as in the fresh anorthosite. This indicates that the Al-depleted and Si-enriched layer does not build up on the acid-reacted surface.

  • PDF

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.

A Study of the Properties of CuInS2 Thin Film by Sulfurization

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.73-76
    • /
    • 2010
  • The copper indium disulfide ($CuInS_2$) thin film was manufactured using sputtering and thermal evaporation methods, and the annealing with sulfurization process was used in the vacuum chamber to the substrate temperature on the glass substrate, the annealing temperature and the composition ratio, and the characteristics thereof were investigated. The $CuInS_2$ thin film was manufactured by the sulfurization of a soda lime glass (SLG) Cu/In/S stacked [1] elemental layer deposited on a glass substrate by vacuum chamber annealing [2] with sulfurization for various times at a temperature of substrate temperature of $200^{\circ}C$. The structure and electrical properties of the film was measured in order to determine the optimum conditions for the growth of $CuInS_2$ ternary compound semiconductor $CuInS_2$ thin films with a non-stoichiometric composition. The physical properties of the thin film were investigated under various fabrication conditions [3,4], including the substrate temperature, annealing temperature and annealing time by X-ray diffraction (XRD), field Emission scanning electron microscope (FE-SEM), and Hall measurement systems. [5] The sputtering rate depending upon the DC/RF power was controlled so that the composition ratio of Cu versus In might be around 1:1, and the substrate temperature affecting the quality of the film was varied in the range of room temperature (RT) to $300^{\circ}C$ at intervals of $100^{\circ}C$, and the annealing temperature of the thin film was varied RT to $550^{\circ}C$ in intervals of $100^{\circ}C$.

Fabrication and Gas Sensing Properties of WO$_3$Thick Film Gas Sensor Dependent on Heat-Treatment Condition (소성 조건에 따른 WO$_3$계 후막센서소자의 제조 및 응답특성)

  • 정용근;엄우식;이희수;최성철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • We have fabricated $WO_3$ thick film gas sensor under various firing conditions in order to study gas sensing properties in terms of the variation of microstructure and non-stoichiometric structure of gas sensing layer. $WO_3$ paste mixed homogeneously with organic vehicle was coated by screen printing method on alumina substrate composed of Au electrode and $RuO_2$heater on each side. To change filing condition, sensing materials were fared at 600-$800^{\circ}C$ for 1 hour and refired at $700^{\circ}C$ for 1 hour in the mixtures of $_Ar/O2$gas. In the result of heat-treatment, $WO_3$ gas sensor fared at $700^{\circ}C$ showed best gas sensing properties of 210 gas sensitivity and 2 second response time and the best firing environment was 40-50% of $Ar/O_2$gas.

  • PDF

Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory (전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석)

  • Choi, Hyuk;Kang, Eunji;Kim, Hyun You
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.

Separating nanocluster Si formation and Er activation in nanocluster-Si sensitized Er luminescence

  • Kim, In-Yong;Sin, Jung-Hun;Kim, Gyeong-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.109-109
    • /
    • 2010
  • $Er^{3+}$ ion shows a stable and efficient luminescence at 1.54mm due to its $^4I_{13/2}\;{\rightarrow}\;^4I_{15/2}$ intra-4f transition. As this corresponds to the low-loss window of silica-based optical fibers, Er-based light sources have become a mainstay of the long-distance telecom. In most telecom applications, $Er^{3+}$ ions are excited via resonant optical pumping. However, if nanocluster-Si (nc-Si) are co-doped with $Er^{3+}$, $Er^{3+}$ can be excited via energy transfer from excited electrical carriers in the nc-Si as well. This combines the broad, strong absorption band of nc-Si with narrow, stable emission spectra of $Er^{3+}$ to allow top-pumping with off-resonant, low-cost broadband light sources as well as electrical pumping. A widely used method to achieve nc-Si sensitization of $Er^{3+}$ is high-temperature annealing of Er-doped, non-stoichiometric amorphous thin film with excess Si (e.g.,silicon-rich silicon oxide(SRSO)) to precipitate nc-Si and optically activate $Er^{3+}$ at the same time. Unfortunately, such precipitation and growth of nc-Si into Er-doped oxide matrix can lead to $Er^{3+}$ clustering away from nc-Si at anneal temperatures much lower than ${\sim}1000^{\circ}C$ that is necessary for full optical activation of $Er^{3+}$ in $SiO_2$. Recently, silicon-rich silicon nitride (SRSN) was reported to be a promising alternative to SRSO that can overcome this problem of Er clustering. But as nc-Si formation and optical activation $Er^{3+}$ remain linked in Er-doped SRSN, it is not clear which mechanism is responsible for the observed improvement. In this paper, we report on investigating the effect of separating the nc-Si formation and $Er^{3+}$ activation by using hetero-multilayers that consist of nm-thin SRSO or SRSN sensitizing layers with Er-doped $SiO_2$ or $Si_3N_4$ luminescing layers.

  • PDF

Studies on the Preparation of Precipitated Calcium Carbonate(I) : Formation and Transformation of Amorphous Calcium Carbonate (침강성탄산칼슘의 제조에 관한 연구(I) : 비정질탄산칼슘의 생성과 전이)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.522-526
    • /
    • 1992
  • Carbonation process of an aqueous solution of $Ca(OH)_2$ with $CO_2$ gas at $10^{\circ}C$ has been studied to investigate the formation and transformation processes of amorphous calcium carbonate. It was suggested that the amorphous calcium carbonate consisting of spherical particles with the diameter in the range of $0.02{\sim}0.05{\mu}m$ be a non-stoichiometric $CaCO_3$ phase containing small amounts of $H_2O$ and small incorporations of $HCO^-_3$. Amorphous $CaCO_3$ is unstable in the aqueous solution and converts to calcite, and its morphology depends on the carbonate species present in the slurry such that with [$CO_3^{2-}$] prevailing, chain-like calcite composed of ultrafine colloidal particles and with [$HCO^-_3$] prevailing, rhombohedral particles of calcite are formed respectively. Therefore, morphological control of calcium carbonate crystals could be expected by the adequate controls of transformation process of the amorphous calcium carbonate.

  • PDF

Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System (SNCR-SCR 하이브리드 시스템의 질소산화물 제거 특성)

  • Cha, Jin Sun;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.658-663
    • /
    • 2011
  • The SNCR-SCR (selective non-catalytic reduction-selective catalytic reduction) hybrid system is an economical NOx removal system. In this study, the effect of the operating parameters of the SNCR-SCR hybrid system on NOx removal efficiency was investigated. When the SNCR reactor was operated at a temperature lower than the optimum temperature ($900{\sim}950^{\circ}C$), an additional NO removal is obtained basesd on the utilization of $NH_3$ slip. On the other hand, the SNCR reactor operated above the temperature resulted in no additional NO removal of SCR due to decomposition of $NH_3$. Therefore, the SNCR process should be operated at optimum temperature to obtain high NO removal efficiency and low $NH_3$ slip. Thus, it is important to adjust NSR (normalized stoichiometric ratio) so that $SR_{RES}$ can be maintained at an appropriate level.

A-site Non-stoichiometric Effects of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics on the Dielectric and Electrical Properties (Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 A-site 비화학양론이 유전 및 전기적 특성에 미치는 영향)

  • Park, Jung Soo;Lee, Ku Tak;Yun, Ji Sun;Cho, Jeong Ho;Jeong, Young Hun;Paik, Jong Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.803-808
    • /
    • 2014
  • $Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics with an excess $Bi^{3+}$ and a deficiency of $Na^+$ and $K^+$ were synthesized by a conventional solid state reaction method. The structure and morphology of $Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics were characterized by X-ray diffraction and field emission scanning electron microscopy. The electric polarization and mechanical strain induced by external electric field, and the temperature dependence of dielectric constant were investigated. These results demonstrated that an ergodic relaxor phase can be induced by controls of the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. A phase boundary between non-ergodic and ergodic relaxor phases can be observed at ambient temperature. The ergodic relaxor phase can be transferred to the ferroelectric phase by application of the electric field. The stability of the induced ferroelectric phases strongly depends on the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. The maximum strain of 0.31% was observed in $Bi_{0.51}(Na_{0.78}K_{0.22})_{0.47}TiO_3$ ceramics sintered at $1,150^{\circ}C$ for 2 h.