DOI QR코드

DOI QR Code

A-site Non-stoichiometric Effects of Bi0.5(Na0.78K0.22)0.5TiO3 Ceramics on the Dielectric and Electrical Properties

Bi0.5(Na0.78K0.22)0.5TiO3 세라믹스의 A-site 비화학양론이 유전 및 전기적 특성에 미치는 영향

  • Park, Jung Soo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Ku Tak (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
  • 박정수 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 이규탁 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 윤지선 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 조정호 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 정영훈 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀) ;
  • 백종후 (한국세라믹기술원 전자소재융합본부 지능형전자부품팀)
  • Received : 2014.09.02
  • Accepted : 2014.11.05
  • Published : 2014.12.01

Abstract

$Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics with an excess $Bi^{3+}$ and a deficiency of $Na^+$ and $K^+$ were synthesized by a conventional solid state reaction method. The structure and morphology of $Bi_{0.5+x}(Na_{0.78}K_{0.22})_{0.5-3x}TiO_3$ ceramics were characterized by X-ray diffraction and field emission scanning electron microscopy. The electric polarization and mechanical strain induced by external electric field, and the temperature dependence of dielectric constant were investigated. These results demonstrated that an ergodic relaxor phase can be induced by controls of the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. A phase boundary between non-ergodic and ergodic relaxor phases can be observed at ambient temperature. The ergodic relaxor phase can be transferred to the ferroelectric phase by application of the electric field. The stability of the induced ferroelectric phases strongly depends on the mole ratio of $Bi^{3+}$, $Na^+$ and $K^+$. The maximum strain of 0.31% was observed in $Bi_{0.51}(Na_{0.78}K_{0.22})_{0.47}TiO_3$ ceramics sintered at $1,150^{\circ}C$ for 2 h.

Keywords

References

  1. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  2. N. B. Do, H. D. Jang, I. Hong, H. S. Han, D. T. Le, W. P. Tai, and J. S. Lee, Ceram. Int., 38, S359 (2012). https://doi.org/10.1016/j.ceramint.2011.05.012
  3. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. J. H. Cho, Y. H. Jeong, J. H. Nam, J. S. Yun, and Y. J. Park, Jpn. J. Appl. Phys., 52, 101501 (2013). https://doi.org/10.7567/JJAP.52.101501
  5. G. A. Smolensky, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State, 2, 2651(1961).
  6. T. Takenaka, K. Maruyama, and K. Sakata, Jpn. J. Appl. Phys., 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236
  7. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999). https://doi.org/10.1143/JJAP.38.5564
  8. K. Yoshii, Y. Hiruma, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  9. V. Dorect, G. Trolliard, and P. Boullay, Chem. Mater., 20, 5061 (2008). https://doi.org/10.1021/cm8004634
  10. W. Jo, R. Dittmer, M. Acosta, J. Zhang, C. Groh, E. Sapper, K. Wang, and J. Rodel, J. Electroceam., 29, 71 (2012). https://doi.org/10.1007/s10832-012-9742-3
  11. J. E. Daniels, W. Jo, J. Rodel, and J. L. Jones, Appl. Phys. Lett., 95, 032904 (2009). https://doi.org/10.1063/1.3182679
  12. G, Picht, J. Topfer, and E. Hennig, J. Eur. Ceram. Soc., 30, 3445 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.042
  13. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrenberg, and H. Fuess, J. Appl. Crystallogr., 43, 1314 (2010). https://doi.org/10.1107/S0021889810038264
  14. J. Kling, X. Tan, W. Jo, H. J. Kleebe, H. Fuess, and J. Rodel, J. Am. Ceram. Soc., 93, 2452 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
  15. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, and T. G. Park, Appl. Phys. Lett., 98, 012902 (2011). https://doi.org/10.1063/1.3525370
  16. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, T. G. Park, D. Do, and S. S. Kim, Appl. Phys. Lett., 96, 022901 (2010). https://doi.org/10.1063/1.3275704
  17. A. Ullah, C. W. Ahn, A. Hussain, and I. W. Kim, Curr. Appl. Phys., 10, 1367 (2010). https://doi.org/10.1016/j.cap.2010.05.004
  18. Y. Guo, M. Gu, H. Luo, Y. Liu, and R. L. Withers, Phys. Rev. B, 83, 054118 (2011). https://doi.org/10.1103/PhysRevB.83.054118
  19. Q. Xu, D. P. Huang, M. Chen, W. Chen, H. X. Liu, and B. H. Kim, J. Alloys Compd., 471, 310 (2009). https://doi.org/10.1016/j.jallcom.2008.03.078
  20. Y. Guo, M. Gu, and H. Luo, J. Am. Ceram. Soc., 94, 1350 (2011). https://doi.org/10.1111/j.1551-2916.2011.04509.x
  21. F. Ni, L. Luo, X. Pan, W. Li, and J. Zhu, J. Alloys Compd., 541, 150 (2012). https://doi.org/10.1016/j.jallcom.2012.06.129