• Title/Summary/Keyword: non-road transportation

Search Result 95, Processing Time 0.017 seconds

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Comparative Analysis of Elderly's and Non-elderly's Human Traffic Accident Severity (고령운전자와 비고령운전자의 인적교통사고 심각도 비교분석)

  • Lee, Sang Hyuk;Jeung, Woo Dong;Woo, Yong Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.133-144
    • /
    • 2012
  • This study focused on estimating influential factors of traffic accidents and analyzing traffic accident severity of elderly and non elderly using traffic accident data. In order to reclassify elderly and non elderly traffic accident by a statistical method from entire traffic accident data, multiple discriminant analysis was applied. Also ordered logit model was applied for analyzing traffic accident severities using traffic accident severities as an independent variable and transportation facilities, road conditions and human characteristics as dependent variables. As results of the comparison between elderly and non elderly traffic accident, the traffic accident severity was affected by the age, types of traffic accidents, human characteristics and road conditions as well. Also, transportation facilities and road conditions affected to more elderly traffic accident than non elderly. Therefore, traffic accident severity would be decreased with the improvement of transportation facilities and road conditions for the elderly.

The Estimating MFFn by SWMM in The Transportation Area (SWMM 모형을 활용한 도로 형태별 초기세척비율 산정)

  • Kwon, Hun-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Shin, Suk-Ho;Lee, Chun-Sik;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2012
  • The MFFn(Mass First Flush) was analyzed for various rainy events(monitoring data from 2008 to 2009) in Transportation area(Highway, National road, Trunk road). Estimated MFFn using SWMM was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good ($R^2$=0.89). Pollutants runoff loads by volume showed Highway 26.6%, National road 44.8%, Trunk road 35.0% at the MFF20(20% by total runoff). A case of MFF30, pollutants runoff loads by volume showed Highway 40.2%, National road 54.3%, Trunk road 46.8%. According to the results, Initial precipitation basis were Highway MFF30, National road MFF20, Trunk road MFF30 when the Non-Point source control facilities set up.

A Traffic Equilibrium Model with Area-Based Non Additive Road Pricing Schemes (지역기반의 비가산성 도로통행료 부과에 따른 교통망 균형모형)

  • Jung, Jumlae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.649-654
    • /
    • 2008
  • In the definition of non additive path, the sum of travel costs of links making up the path is not equal to the path cost. There are a variety of cases that non-additivity assumption does not hold in transportation fields. Nonetheless, traffic equilibrium models are generally built up on the fundamental hypothesis of additivity assumption. In this case traffic equilibrium models are only applicable within restrictive conditions of the path cost being linear functions of link cost. Area-wide road pricing is known as an example of realistic transportation situations, which violates such additivity assumption. Because travel fare is charged at the moment of driver's passing by exit gate while identified at entry gate, it may not be added linearly proportional to link costs. This research proposes a novel Wordrop type of traffic equilibrium model in terms of area-wide road pricing schemes. It introduces binary indicator variable for the sake of transforming non-additive path cost to additive. Since conventional shortest path and Frank-Wolfe algorithm can be applied without route enumeration and network representation is not required, it can be recognized more generalized model compared to the pre-proposed approaches. Theoretical proofs and case studies are demonstrated.

Optimal Road Congestion Pricing under Inter-dependent Market Conditions (Theoretical Review) (상호의존적 교통시장하의 최적 도로혼잡통행료 연구(이론적 고찰))

  • Yun, Jang-Ho;Yeo, Hong-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.139-148
    • /
    • 2006
  • In order to incorporate substitution effects between different transport modes in optimal road Pricing, relating economic theories and models have been reviewed. It includes unconstrained optimization problem of maximizing separable and non-separable social net benefit functions of different substitutable urban transport modes. In doing that, the problem and limitations such as path-independent conditions with the asymmetric Jacobian of the objective function have been reviewed. Consequently, a plausible way of deriving optimal road price under interdependent market conditions has been suggested so that the idea can help identifying desirable and acceptable urban transport policy alternatives in a more comprehensive way.

Study on threshold values of a intensity-of-congestion measure for operations evaluation at signalized intersections based on traffic flow information (교통소통 정보기반 신호교차로 운영평가를 위한 혼잡강도 지표 임계값 연구)

  • Kim, Jin-Tae;Cho, Yongbin
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.85-92
    • /
    • 2018
  • PURPOSES : In this study, analyze the characteristics of IOC indicator 'threshold' which is needed when evaluating the traffic signal operation status with ESPRESSO in various grade road traffic environment of Seoul metropolitan city and derive suggested value to use in field practice. METHODS : Using the computerized database program (Postgresql), we extracted data with regional characteristics (Arterial, Collector road) and temporal characteristics (peak hour, non-peak hour). Analysis of variance and Duncan's validation were performed using statistical analysis program (SPSS) to confirm whether the extracted data contains statistical significance. RESULTS : The analysis period of the main and secondary arterial roads was confirmed to be suitable from 14 days to 60 days. For the arterial, it is suggested to use 20 km/h as the critical speed for PM peak hour and weekly non peak hour. It is suggested to use 25 km/h as the critical speed for AM peak hour and night non peak hour. As for the collector road, it is suggested to use 20 km/h as the critical speed for PM peak hour and weekly non peak hour. It is suggested to use 30 km/h as the critical speed for AM peak hour and night non peak hour. CONCLUSIONS : It is meaningful from a methodological point of view that it is possible to make a reasonable comparative analysis on the signal intersection pre-post analysis when the signal operation DB is renewed by breaking the existing traffic signal operation evaluation method.

The Impacts of the Traffic Demand Management Policies across the Different Income Classes in Seoul (교통수요관리정책의 소득계층별 효과 분석)

  • 이번송;이의섭
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.7-27
    • /
    • 1996
  • It is very costly to construct transportation facilities such as roads, bridges, tunnels, and public parking lots mainly because land price is very high in metropolis like Seoul. Private car oweners use these facilities more extensively than public transportation users. However, the government does not impose proper charges for using these facilities. Such improper charge causes traffic congestion and then decreases social welfare in efficiency and equity. To solve problem, many traffic demand management policies are used. Traffic management policies which are currently used or under consideration by the City Government of Seoul include the imposition of road tolls, increase of parking fees in public parking lots, increase of gasoline taxes, expanded implementation of bus only lanes, and shippujae, which requires one(1) non-driving day for 10 calendar days. This study examined the impacts of such policies on the different income classes using simulation analysis. We found that the impacts of market-oriented policies such as the imposition of road tolls and the increase of gasoline taxes is regressive. Also, we found that while the low and middle income private car users have incentive have incentive for public transportation use, the high income private car users have no incentive for public transportation use in many cases.

  • PDF

A Study on Calculation of Air Pollutants Emission Factors for Construction Equipment (건설기게의 대기오염물질 배출계수 산정을 위한 연구)

  • lim, Jae-Hyun;Jung, Sung-Woon;Lee, Tae-Woo;Kim, Jong-Choon;Seo, Chung-Youl;Ryu, Jung-Ho;Hwang, Jin-Woo;Kim, Sun-Moon;Eom, Dong-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.188-195
    • /
    • 2009
  • Generally. mobile sources of air pollution were classified in on-road and non-road. Due to increased registration number of construction equipment in Korea. updated emission factors for non-road mobile sources, such as construction machinery. should be developed. NONROAD model of U.S. EPA already has introduced transient adjustment factors and sulfur adjustment factors for emission factors of diesel powered engine. In addition to this. European Environment Agency (EEA) has proposed emission factors for off-road machinery including several types of construction equipment. In this study. six types of construction equipment, such as excavator. forklift, loader, crane, roller and bulldozer, were studied to estimate emission factors based on total registration status in Korea. Total 445 construction equipments between 2004 and 2007 model year were tested with KC1-8 mode and air pollutants (CO, THC, $NO_x$, and PM) were measured. After statistical estimation and calculation, emission factors for CO, THC, $NO_x$, and PM for excavator, forklift, loader, crane, roller and bulldozer were provided and compared with previous emission factors. Moreover, updated emission factors for six types of construction equipment in this study were verified after comparison with emission factors of U.S. EPA. Finally, estimated emission amounts of four air pollutants were suggested according to six types of construction equipment.

Characteristics of Non-Point Pollution from Road Surface Runoff

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.665-670
    • /
    • 2010
  • Pollutants from urban pavement consists various kinds of substances which are originated from dry deposition, a grind out tire, corrosive action of rain to pavement and facilities and raw materials of the road etc.. These are major pollutants of urban NPS (Non-point source) during rainfall period. However there is not enough information to control such pollutants for appropriate management of natural water quality. In this study of transportation areas, three monitoring stations were set up at trunk road, urban highway and national road in Gyeongnam province. Runoff flow rate was measured at every 15minutes by automatic flow meters installed at the end of storm sewer pipe within the road catchment area for water quality analysis. Data was collected every 15 minutes for initial two hours of rainfall. Additional samples were collected 1-4 hours interval till the end of rainfall. The monitoring parameters were $COD_{Mn}$, SS, T-N & T-P and heavy metals. The average EMCs of TSS and $COD_{Mn}$ were 62.0 mg/L and 24.2 mg/L on the city trunk road, which were higher than those of urban highway and national road, indicating higher pollutant loads due to activities in the city downtown area beside the vehicle. On the other hand, the average EMC of T-N and T-P were in the range of 2.67-3.23 mg/L and 0.19-3.21 mg/L for all the sampling sites. Heavy metals from the roads were mainly Fe, Zn, Cu and Mn, showing variable EMCs by the type of road. From the TSS wash-off analysis in terms of FF(first flush) index, first flush phenomenon was clearly observed in the trunk road(FF : 0.89-1.43). However, such mass delivery behavior was not apparently shown in urban highway(FF : 0.90-1.11) and national road(FF : 0.81-1.41).

Traffic Flow Analysis by Delay Penalty and Road Pricing (지각패널티와 변동요금에 의한 교통류 분석 연구)

  • Byun, Wan-Hee;Kim, Ju-Hyun;Choi, Byun-Kuk;Song, Doo-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.6 s.84
    • /
    • pp.71-80
    • /
    • 2005
  • With rapid development Telematics industry, the concern of dynamic road pricing system is increasing. In this study, the change of traffic flows according to traffic information and variation of congestion road prices related to the dynamic road pricing was analyzed. In this study, three facts were unfolded. First, high delay penalty and low delay penalty drivers are shown different reaction for the different congestion road prices. Second, the higher congestion road prices the more drivers convert their route from toll road to non toll road. Third, high penalty drivers are converting to toll road than low delay penalty drivers under same congestion road prices. This study has reached the conclusion that dynamic congestion pricing has a high possibility for traffic management.