• Title/Summary/Keyword: non-ribosomal peptide

Search Result 19, Processing Time 0.023 seconds

Study on the Specificity Alteration of Mammalian UV Endonuclease III

  • Lee, Jae-Yung;Kim, Joon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 1997
  • A mammalian DNA repair enzyme, UV endonuclease III which also functions as a ribosomal protein S3 (rpS3), was purified from mouse cells and characterized. UV endonuclease III was previously cloned and known to yield a peptide of 32 kDa upon expression in E. coli [Kim et al., (1995) J. Bioi. Chem. 270, 13620-13629]. However, biochemically purified UV endonuclease III, which has a sedimentation coefficient of 3.25, appears to have an additional peptide of 28 kDa. It appears that two bands were derived from one complex, judging from the comparison of the nuclease activity on the native and SDS-gel electrophoreses. UV endonuclease III becomes non-specific upon purification and this phenomenon is more significant in the case of pure fractions of the enzyme. Non-specific activity was not influenced by pH or any salt conditions.

  • PDF

Isolation and Characterization of Two Amino Acid-activating Domains of Peptide Synthetase Gene from Bacillus subtilis 713

  • Lee, Youl-Soon;You, Sang-Bae;Lee, Ji-Wan;Kim, Tae-Young;Kim, Sung-Uk;Bok, Song-Hae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.399-405
    • /
    • 1998
  • From the sequence alignment of various non-ribosomal peptide synthetases, several motifs of highly conserved sequences have been identified within each domain of peptide synthetases. We designed PCR primers based on the highly conserved nucleotide sequences to amplify and isolate a ∼7.2-kb DNA fragment of the Bacillus subtilis 713 which was isolated and reported to produce an antifungal peptide compound. Nucleotide sequence analysis of 4.8 kb of the predicted amino acids revealed significant homology to various peptide synthetases over the whole sequence and also revealed two amino acid-activating domains with highly conserved Core 1 to Core 6 and spacer motif. This suggests that the isolated DNA fragment is part of a peptide synthetase gene for antifungal peptide.

  • PDF

New Degenerate Primer for the Cyanobacterial Non-ribosomal Peptides (시아노박테리아 Non-ribosomal Peptides의 효과적인 연구를 위한 New Degenerate Primer의 개발)

  • Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.362-365
    • /
    • 2007
  • Cyanobacteria have been identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Large multienzyme complexes which are responsible for the non-ribosomal biosynthesis of peptides are modular for the addition of a single amino acid. An activation of amino acid substrates results in an amino adenylate occuring via an adenylation domain (A-domain). A-domains are responsible for the recognition of amino acids as substrates within NP synthesis. The A-domain contains ten conserved motifs, A1 to A10. In this study, ten conserved motifs from A1 to A10 were checked regarding their amino acid sequence of the NRPS-module of Microcystis aeruginosa PCC 7806. The part of the amino acid sequence chosen was that which contained as many conserved motives as possible, and then these amino sequence were compared between other cyanobacteria to design a new degenerate primer. A new degenerate primer (A3/A7 primer) was designed to detect any putative NP synthetase region in unkwon cyanobacteria by a reverse translation of the conserved amino acid sequence and a search for cyanobacterial DNA bank.

Extracellular Products from Cyanobacteria (시아노박테리아의 세포외산물에 대한 연구)

  • Kwon, Jong-Hee;Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.398-402
    • /
    • 2008
  • Cyanobacteria havebeen identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Though many useful natural products have been identified in cyanobacterial biomass, cyanobacteria produce also extracellular proteins related with NRPS/PKS. Detection of unknown secondary metabolites in medium was carried in the present study by a screening of 98 cyanobacterial strains. A degenerated PCR technique as molecular approaches was used for general screening of NRPS/PKS gene in cyanobacteria. A putative PKS gene was detected by DKF/DKR primer in 38 strains (38.8%) and PCR amplicons resulted from a presence of NRPS gene were showed by MTF2/MTR2 primer in 30 strains (30.6%) and by A3/A7 primer in 26 strains (26.5%). HPLC analysis for a detection of natural products was performed in extracts from medium in which cyanobacteria containing putative PKS or NRPS were cultivated. CBT57, CBT62, CBT590 and CBT632 strains were screened for a production of extracellular natural products. 5 pure substances were detected from medium of these cyanobacteria.

Complete genome sequence of Gordonia sp. MMS17-SY073, a soil actinobacterium (토양 방선균인 Gordonia sp. MMS17-SY073 균주의 유전체 분석)

  • Kim, Yeong Seok;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.303-305
    • /
    • 2019
  • An actinobacterial strain designated Gordonia sp. MMS17-SY073 (=KCTC 49257) was isolated from a coastal soil of an island, and its complete genome was analyzed. A single contig consisting of 5,962,176 bp with the G + C content of 67.4% was obtained, and the annotation resulted in 5,201 protein-coding genes, 6 rRNA genes and 45 tRNA genes. Strain MMS17-SY073 was closest to the type strain of Gordonia soli based on the 16S rRNA gene sequence comparison, sharing 98.5% sequence similarity. A number of biosynthetic gene clusters for secondary metabolites, non-ribosomal peptide synthetase types in particular, could be identified from the genome.

Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675

  • Hyun, Hyesook;Lee, Sunjin;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1068-1077
    • /
    • 2018
  • DKxanthenes are a class of yellow secondary metabolites produced by myxobacterial genera Myxococcus and Stigmatella. We identified a putative 49.5 kb DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675 by genomic sequence and mutational analyses. The cluster consisted of 15 genes (MYSTI_06004-MYSTI_06018) encoding polyketide synthases, non-ribosomal peptide synthases, and proteins with unknown functions. Disruption of the genes by plasmid insertion resulted in defects in the production of yellow pigments. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses indicated that the yellow pigments produced by M. stipitatus DSM 14675 might be novel DKxanthene derivatives. M. stipitatus did not require DKxanthenes for the formation of heat-resistant viable spores, unlike Myxococcus xanthus. Furthermore, DKxanthenes showed growth inhibitory activity against the fungi Aspergillus niger, Candida albicans, and Rhizopus stolonifer.

Streptomyces Cytochrome P450 Enzymes and Their Roles in the Biosynthesis of Macrolide Therapeutic Agents

  • Cho, Myung-A;Han, Songhee;Lim, Young-Ran;Kim, Vitchan;Kim, Harim;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • The study of the genus Streptomyces is of particular interest because it produces a wide array of clinically important bioactive molecules. The genomic sequencing of many Streptomyces species has revealed unusually large numbers of cytochrome P450 genes, which are involved in the biosynthesis of secondary metabolites. Many macrolide biosynthetic pathways are catalyzed by a series of enzymes in gene clusters including polyketide and non-ribosomal peptide synthesis. In general, Streptomyces P450 enzymes accelerate the final, post-polyketide synthesis steps to enhance the structural architecture of macrolide chemistry. In this review, we discuss the major Streptomyces P450 enzymes research focused on the biosynthetic processing of macrolide therapeutic agents, with an emphasis on their biochemical mechanisms and structural insights.

Analysis of the Melithiazol Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675 (Myxococcus stipitatus DSM 14675의 melithiazol 생합성 유전자 분석)

  • Hyun, Hyesook;Park, Soohyun;Cho, Kyungyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.391-399
    • /
    • 2016
  • Melithiazols are antifungal substances produced by the myxobacteria Melitangium lichenicola, Archangium gephyra, and Myxococcus stipitatus. Melithiazol biosynthetic genes have been identified in M. lichenicola, but not in A. gephyra and M. stipitatus until now. We identified a 37.3-kb melithiazol biosynthetic gene cluster from M. stipitatus DSM 14675 using genome sequence analysis and mutational analysis. The cluster is comprised of 9 genes (MYSTI_04973 to MYSTI_04965) that encode 4 polyketide synthase modules, 3 non-ribosomal peptide synthase modules, a putative fumarylacetoacetate hydrolase, a putative S-adenosylmethionine-dependent methyltransferase, and a putative nitrilase. Disruption of the MYSTI_04972 or MYSTI_04973 gene by plasmid insertion resulted in defective melithiazol production. The organization of the melithiazol biosynthetic modules encoded by 8 genes from MYSTI_04972 to MYSTI_04965 was similar to that in M. lichenicola Me l46. However, the loading module encoded by the first gene (MYSTI_04973) was different from that of M. lichenicola Me l46, explaining the difference in the production of melithiazol derivatives between the M. lichenicola Me l46 and M. stipitatus strains.

Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans

  • Sheng, Miaomiao;Jia, Huake;Zhang, Gongyou;Zeng, Lina;Zhang, Tingting;Long, Yaohang;Lan, Jing;Hu, Zuquan;Zeng, Zhu;Wang, Bing;Liu, Hongmei
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.689-699
    • /
    • 2020
  • Brevibacillus brevis GZDF3 is a gram-positive, plant growth-promoting rhizosphere bacterium (PGPR) isolated from the rhizosphere soil of Pinellia ternata (an important herb in traditional Chinese medicine). The GZDF3 strain produces certain active compounds, such as siderophores, which are the final metabolite products of non-ribosomal peptide synthetase (NRPS) and independent non-ribosomal peptide synthetase (NIS) activity. With the present study, we attempted to investigate the siderophore production characteristics and conditions of Bacillus sp. GZDF3. The antibacterial activity of the siderophores on pathogenic fungi was also investigated. Optimal conditions for the synthesis of siderophores were determined by single factor method, using sucrose 15 g/l, asparagine 2 g/l, 32℃, and 48 h. The optimized sucrose asparagine medium significantly increased the production of siderophores, from 27.09% to 54.99%. Moreover, the effects of different kinds of metal ions on siderophore production were explored here. We found that Fe3+ and Cu2+ significantly inhibited the synthesis of siderophores. The preliminary separation and purification of siderophores by immobilized-metal affinity chromatography (IMAC) provides strong antibacterial activity against Candida albicans. The synergistic effect of siderophores and amphotericin B was also demonstrated. Our results have shown that the GZDF3 strain could produce a large amount of siderophores with strong antagonistic activity, which is helpful in the development of new biological control agents.