• Title/Summary/Keyword: non-regular quantizer design

Search Result 2, Processing Time 0.015 seconds

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

Efficient distributed estimation based on non-regular quantized data

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.710-715
    • /
    • 2019
  • We consider parameter estimation in distributed systems in which measurements at local nodes are quantized in a non-regular manner, where multiple codewords are mapped into a single local measurement. For the system with non-regular quantization, to ensure a perfect independent encoding at local nodes, a local measurement can be encoded into a set of a great number of codewords which are transmitted to a fusion node where estimation is conducted with enormous computational cost due to the large cardinality of the sets. In this paper, we propose an efficient estimation technique that can handle the non-regular quantized data by efficiently finding the feasible combination of codewords without searching all of the possible combinations. We conduct experiments to show that the proposed estimation performs well with respect to previous novel techniques with a reasonable complexity.