• Title/Summary/Keyword: non-linear vibrations

Search Result 74, Processing Time 0.02 seconds

Non linear vibrations of stepped beam system under different boundary conditions

  • Ozkaya, E.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2007
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Free Vibrations of Curved Beams on Non-homogeneous Elastic Foundation (비균질 탄성지반 위에 놓인 곡선보의 자유진동)

  • 이병구;이태은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.989-993
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams supported by non-homogeneous elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the linear elastic foundation is considered as the non-homogeneous foundation. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic curved member is considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms.

  • PDF

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

A comparative study of the models to predict aeroelastic vibrations of circular cylinder and chimneys

  • Rahman, Saba;Jain, Arvind K.;Bharti, S.D.;Datta, T.K.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.35-54
    • /
    • 2022
  • A comparative study of aeroelastic vibrations of spring-mass cylinder and chimneys, with the help of a few wake oscillator models available in the literature, is presented. The models include those proposed by Facchinetti, Farshidian and Dolatabadi method-I, Farshidian and Dolatabadi method-II, de Langre, Skop and Griffin. Besides, the linear model proposed by Simiu and Scanlan is also incorporated in the study. For chimneys, the first mode oscillation is considered, and the top displacements of the chimneys are evaluated using the considered models. The results of the analytical model are compared with those obtained from the numerical solution of the wake-oscillator coupled equations. The response behavior of the cylinder and three chimneys of different heights are studied and compared with respect to critical parametric variations. The results of the study indicate that the numerical analysis is essential to capture the effect of non-linear aeroelastic phenomena in the solutions, especially for small damping. Further, except for the models proposed by Farshidian and Dolatabadi, other models predict nearly the same responses. The non-linear model predicts a much higher response as compared to the linear model.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount (능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Sim, Ho-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities

  • Alasadi, Abbas A.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.273-282
    • /
    • 2019
  • This article is concerned with the investigation of geometrically non-linear vibration response of refined thick porous nanobeams. To this end, non-local theory of elasticity has been adopted to provide the nanobeam formulation. Voids or pores can affect the material characteristics of the nanobeam. So, their effects have been considered in this research and also there are various void distributions. The closed form solution of the non-linear problem has been used that is adopted from previous articles. Then, it is focused on the impacts of non-local field, void distribution, void amount and geometrical properties on non-linear vibrational characteristic of a nano-size beam.

A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper (점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동)

  • 박용남;하창우;김의간;전효중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF