• Title/Summary/Keyword: non-linear dynamic

Search Result 695, Processing Time 0.032 seconds

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

A Study on the Characteristics of Body Architecture as Social Structures Expressed in the Modern Fashion (현대 패션에 표현된 사회 구조물로서 신체 건축의 특성 연구)

  • Seo, Seung-Mi
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.5
    • /
    • pp.842-856
    • /
    • 2010
  • The relationships between fashion and architecture have been interactive. Since the fashion has had the role to decide the structure type of urban environment, it is becoming the new sign of space boundary. This study searches the social and cultural characteristics of Nomadism and the relationships among all kinds of changing objects. After then, the module system characteristics are meditated by analyzing the composition method of module system in architecture. Moreover, the study examines the aesthetic values in the fashion and body architecture from artistic aspect. Based on the above discussion, the followings are the characteristics of body architecture as the social structures expressed in modern fashion. The liquidity is the fluid form of dynamic structures. It shows the extended space form which produces the continuity. The transformation is the variable structure by module system and it forms the diversified structural combination. The movement combines the controlling function to be able to regulate and move freely the body related objects. The convergence is the text combination interpenetrated mutually in enlarged space. Through this, the non-linear continuity and the access of the individual factors are shown.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry

  • Jang, Yu-Mi;Oh, Jun-Sik;Park, Chang-Joon;Yang, Sang-Sik;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2791-2796
    • /
    • 2010
  • In the present study, we constructed a membrane inlet assembly for selective permeation of volatile airborne organic compounds for subsequent analysis by time-of-flight mass spectrometry. The time-dependent diffusion of analytes through a $75\;{\mu}m$ thick polydimethylsiloxane membrane was measured by monitoring the ion signal after a step change in the sample concentration. The results fit well to a non-steady-state permeation equation. The diffusion coefficient, response time, and sensitivity were determined experimentally for a range of polar (halogenated) and nonpolar (aromatic) compounds. We found that the response times for several volatile organic compounds were greatly influenced by the alkyl chain length as well as the size of the substituted halogen atoms. The detection limits for benzene, ethylbenzene, and 2-propanol were 0.2 ppm, 0.1 ppm, and 3.0 ppm by volume, respectively, with a linear dynamic range greater than three orders of magnitude. These results indicate that the membrane inlet/time-of-flight mass spectrometry technique will be useful for a wide range of applications, particularly for in situ environmental monitoring.

A Novel Finite Element Technique for analyzing Saturated Rotating Machines Using the Domain Decomposition and TLM Method (영역분할법 (domain decomposition)과 TLM법을 이용한 회전기의 비선형 유한 요소 해석)

  • Joo, Hyun-Woo;Im, Chang-Hwan;Lee, Chang-Hwan;Kim, Hong-Kyu;Jung, Hyn-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.623-625
    • /
    • 2000
  • For the finite element analysis of highly saturated rotating machines involving rotation of a rotor such as dynamic analysis. cogging torque analysis and etc, so much time is needed because a new system matrix equation should be solved for each iteration and time step. It is proved in this paper that. in linear systems. the computational time can be greatly reduced by using the domain decomposition method (DDM). In nonlinear systems. however. this advantage vanishes because the stiffness matrix changes at each iteration especially when using the Newton-Raphson (NR) method. The transmission line modeling (TLM) method resolves this problem because in TLM method the stiffness matrix does not change throughout the entire analysis. In this paper, a new technique for FEA of rotating machines including rotation of rotor and non-linearity is proposed. This method is applied to a test problem. and compared with the conventional method.

  • PDF

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot (이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가)

  • Park, Jae-Hong;Bhan, Wook;Choi, Tae-Young;Kwon, Hyun-Il;Cho, Dong-Il;Kim, Kwang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

A study on the acoustic scalings of cavitation noise in an orifice configuration and a constant flow control valve (오리피스 구조내에서 발생한 공동소음의 음향학적 스케일링에 관한 연구)

  • Lee, J. H.;Lee, S.;Yoo, S. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.81-89
    • /
    • 1999
  • The major source of noise in the process of transporting liquids is related to the cavitation phenomenon. The control valve noise is mostly dominated by bubble dynamics under cavitating conditions. In this investigation, an orifice configuration is set-up to correlate its flow-field and acoustic signatures with those from a control valve device. The performance and noise characteristics form the orifice configuration in anechoic surroundings were measured to reveal the noise sources depending on pressure differences across the orifice configuration. The sound powers from the orifice configuration are effectively normalized using proposed scaling parameters. Flow-excited dynamic systems for which there is no strong coupling between the flow and the system response can be described using a linear source-filter model. On this assumption, the normalized sound powers can be decomposed of noise source function and a response function. To find noise sources, pressure spectra measured over a range of pressure differences are transformed into the product of two non-dimensional frequency function : $P_{ss}(He,f_{ca},x/D) = F(f_{ca})\;G(He,x/D)$. This scheme of finding noise sources is shown to be applicable to the cavitation noise from the control valve effectively Two kinds of cavitating modes based on our experimental data are found and discussed.

  • PDF

Efficient Peer-to-Peer File Sharing Using Network Coding in MANET

  • Lee, Uichin;Park, Joon-Sang;Lee, Seung-Hoon;Ro, Won-W.;Pau, Giovanni;Gerla, Mario
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.422-429
    • /
    • 2008
  • Mobile peer-to-peer (P2P) systems have recently got in the limelight of the research community that is striving to build efficient and effective mobile content addressable networks. Along this line of research, we propose a new peer-to-peer file sharing protocol suited to mobile ad hoc networks (MANET). The main ingredients of our protocol are network coding and mobility assisted data propagation, i.e., single-hop communication. We argue that network coding in combination with single-hop communication allows P2P file sharing systems in MANET to operate in a more efficient manner and helps the systems to deal with typical MANET issues such as dynamic topology and intermittent connectivity as well as various other issues that have been disregarded in previous MANET P2P researches such as addressing, node/user density, non-cooperativeness, and unreliable channel. Via simulation, we show that our P2P protocol based on network coding and single-hop communication allows shorter file downloading delays compared to an existing MANET P2P protocol.

Free Vibration Analysis of Circular Strip Foundations (원호형 띠기초의 자유진동 해석)

  • Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF