• Title/Summary/Keyword: non-linear dynamic

Search Result 695, Processing Time 0.023 seconds

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.

Dynamic Non-Linear Analysis of Ocean Cables Subjected to Earthquakes (지진력을 받는 해양케이블의 동적 비선형해석)

  • 김남일;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • In the previous $paper^{(1),(2)}$, a geometrically non-linear finite element formulation of spatial cables subjected to self-weights and support motions was presented using multiple noded cable elements and how to determine the initial equililbrium state of cables was addressed. In this paper, in order to perform dynamic non-linear analysis of ocean cables subjected to support motions and earthquakes, a numerical method to calculate Morison forces and incorporate effects of earthquake motions is presented based on the Newmark method. Challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to support motions and earthquake loadings.

  • PDF

A Study on the State Space Identification Model of the Dynamic System using Neural Networks (신경회로망을 이용한 동적 시스템의 상태 공간 인식 모델에 관한 연구)

  • 이재현;강성인;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.115-120
    • /
    • 1997
  • System identification is the task of inferring a mathematical description of a dynamic system from a series of measurements of the system. There are several motives for establishing mathematical descriptions of dynamic systems. Typical applications encompass simulation, prediction, fault diagnostics, and control system design. The paper demonstrates that neural networks can be used effective for the identification of nonlinear dynamical systems. The content of this paper concerns dynamic neural network models, where not all inputs to and outputs from the networks are measurable. Only one model type is treated, the well-known Innovation State Space model(Kalman Predictor). The identification is based only on input/output measurements, so in fact a non-linear Extended Kalman Filter problem is solved. Even for linear models this is a non-linear problem without any assurance of convergence, and in spite of this fact an attempt is made to apply the principles from linear models, an extend them to non-linear models. Computer simulation results reveal that the identification scheme suggested are practically feasible.

  • PDF

Static or Dynamic Capital Structure Policy Behavior: Empirical Evidence from Indonesia

  • UTAMI, Elok Sri;GUMANTI, Tatang Ary;SUBROTO, Bambang;KHASANAH, Umrotul
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.71-79
    • /
    • 2021
  • This study investigates the capital structure policy among Indonesian public companies. Previous studies suggest that capital structure policy could follow either static or dynamic behavior. The sample data used in this study was companies in the manufacturing sector, divided into three sub-sectors: the basic and chemical industry, miscellaneous industry, and the consumer goods industry. This study uses panel data from 2010 to 2018, with the Generalized Least Square (GLS) method and compared whether the fixed effect model is better than the common effect model. The results show that the dynamic and non-linear model tests can explain the capital structure determinants than the static and linear models. The dynamic model shows that the capital structure of a certain year is influenced by the capital structure of the previous year. The findings indicate that the company performs some adjustments in its capital structure policy by referring to the previous debt ratio, which implies support to the trade-off theory (TOT). The study also shows that profitability, tangible assets, size, and age explain the variation of capital structure policy. The patterns on the dynamic and non-linear confirm that capital structure runs in a nonlinear pattern, based on the sector, company condition, and the dynamic environment.

Dynamic Analysis of a Geometrical Non-linear Plate (기하학적 비선형성을 갖는 평판의 동특성 해석)

  • 임재훈;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.498-503
    • /
    • 2003
  • Dynamic analysis of a plate with non-linearity due to large deformation is performed in the study. There have been many researches about the non-linear dynamic behavior of plates examining by means of theoretical or numerical analyses. But it is important how exactly model the actual system. In this respect, the Continuous-Time system identification technique is used to generate non-linear models, for stiffness and damping terms, to explain the observed behaviors with single mode assumptions for the simplicity after comparing the experimental results with the numerical results of a linear plate model.

  • PDF

Development of 3D Mapping Algorithm with Non Linear Curve Fitting Method in Dynamic Contrast Enhanced MRI

  • Yoon Seong-Ik;Jahng Geon-Ho;Khang Hyun-Soo;Kim Young-Joo;Choe Bo-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2005
  • Purpose: To develop an advanced non-linear curve fitting (NLCF) algorithm for dynamic susceptibility contrast study of brain. Materials and Methods: The first pass effects give rise to spuriously high estimates of $K^{trans}$ in voxels with large vascular components. An explicit threshold value has been used to reject voxels. Results: By using this non-linear curve fitting algorithm, the blood perfusion and the volume estimation were accurately evaluated in T2*-weighted dynamic contrast enhanced (DCE)-MR images. From the recalculated each parameters, perfusion weighted image were outlined by using modified non-linear curve fitting algorithm. This results were improved estimation of T2*-weighted dynamic series. Conclusion: The present study demonstrated an improvement of an estimation of kinetic parameters from dynamic contrast-enhanced (DCE) T2*-weighted magnetic resonance imaging data, using contrast agents. The advanced kinetic models include the relation of volume transfer constant $K^{trans}\;(min^{-1})$ and the volume of extravascular extracellular space (EES) per unit volume of tissue $\nu_e$.

  • PDF

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

Analysis of the Dynamic Characteristics of the Linear Motors (선형 모터의 동특성 분석)

  • Seol, Jin-Soo;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.258-263
    • /
    • 2005
  • The nearest variety of the industrial world requires using the high precision and resolution positioning technology to do a semi-conductor, information field , and measurement field. It is especially important for the positioning technology that makes up a proper controller, is affected by the minimal heat and vibration, and can control a structurally generated non-linear friction factor to determine the efficiency of the system. The paper is to analyze the vibration characteristic according to the speed of linear motor and grasp the dynamic characteristic through the modal test and show the verification of the experimental result and design parameters by using FEM(Finite Element Method). Also, it shows the optimum standard analyzed the acceleration patterns of the moving part that lead to the vibration source in linear motor. It presents the analyzed dynamic of linear motor in compliance with a change of the non-linear factor.

  • PDF