• Title/Summary/Keyword: non-linear differential equation

Search Result 135, Processing Time 0.023 seconds

A GENERALIZED APPROACH OF FRACTIONAL FOURIER TRANSFORM TO STABILITY OF FRACTIONAL DIFFERENTIAL EQUATION

  • Mohanapriya, Arusamy;Sivakumar, Varudaraj;Prakash, Periasamy
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.749-763
    • /
    • 2021
  • This research article deals with the Mittag-Leffler-Hyers-Ulam stability of linear and impulsive fractional order differential equation which involves the Caputo derivative. The application of the generalized fractional Fourier transform method and fixed point theorem, evaluates the existence, uniqueness and stability of solution that are acquired for the proposed non-linear problems on Lizorkin space. Finally, examples are introduced to validate the outcomes of main result.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

Bending of steel fibers on partly supported elastic foundation

  • Hu, Xiao Dong;Day, Robert;Dux, Peter
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.657-668
    • /
    • 2001
  • Fiber reinforced cementitious composites are nowadays widely applied in civil engineering. The postcracking performance of this material depends on the interaction between a steel fiber, which is obliquely across a crack, and its surrounding matrix. While the partly debonded steel fiber is subjected to pulling out from the matrix and simultaneously subjected to transverse force, it may be modelled as a Bernoulli-Euler beam partly supported on an elastic foundation with non-linearly varying modulus. The fiber bridging the crack may be cut into two parts to simplify the problem (Leung and Li 1992). To obtain the transverse displacement at the cut end of the fiber (Fig. 1), it is convenient to directly solve the corresponding differential equation. At the first glance, it is a classical beam on foundation problem. However, the differential equation is not analytically solvable due to the non-linear distribution of the foundation stiffness. Moreover, since the second order deformation effect is included, the boundary conditions become complex and hence conventional numerical tools such as the spline or difference methods may not be sufficient. In this study, moment equilibrium is the basis for formulation of the fundamental differential equation for the beam (Timoshenko 1956). For the cantilever part of the beam, direct integration is performed. For the non-linearly supported part, a transformation is carried out to reduce the higher order differential equation into one order simultaneous equations. The Runge-Kutta technique is employed for the solution within the boundary domain. Finally, multi-dimensional optimization approaches are carefully tested and applied to find the boundary values that are of interest. The numerical solution procedure is demonstrated to be stable and convergent.

A NEW WAY TO FIND THE CONTROLLING FACTOR OF THE SOLUTION TO A DIFFERENCE EQUATION

  • Park, Seh-Ie
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.833-846
    • /
    • 1999
  • In this paper, we will study the relationship between the controlling factor of the solution to a difference equation and the solution of the corresponding differential equation. Many times the controlling factors are the same. But even the controlling factor of the two solutions may be different, we will discover a way to compute, for first order non-linear equations, the controlling factor of the solution to the difference equation using the solution of the differential equation.

  • PDF

ON TRANSCENDENTAL MEROMORPHIC SOLUTIONS OF CERTAIN TYPES OF DIFFERENTIAL EQUATIONS

  • Banerjee, Abhijit;Biswas, Tania;Maity, Sayantan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1145-1166
    • /
    • 2022
  • In this paper, for a transcendental meromorphic function f and α ∈ ℂ, we have exhaustively studied the nature and form of solutions of a new type of non-linear differential equation of the following form which has never been investigated earlier: $$f^n+{\alpha}f^{n-2}f^{\prime}+P_d(z,f)={\sum\limits_{i=1}^{k}}{p_i(z)e^{{\alpha}_i(z)},$$ where Pd(z, f) is a differential polynomial of f, pi's and αi's are non-vanishing rational functions and non-constant polynomials, respectively. When α = 0, we have pointed out a major lacuna in a recent result of Xue [17] and rectifying the result, presented the corrected form of the same equation at a large extent. In addition, our main result is also an improvement of a recent result of Chen-Lian [2] by rectifying a gap in the proof of the theorem of the same paper. The case α ≠ 0 has also been manipulated to determine the form of the solutions. We also illustrate a handful number of examples for showing the accuracy of our results.

ON THE SOLUTIONS OF THREE ORDER DIFFERENTIAL EQUATION WITH NON-NEGATIVE COEFFICIENTS

  • Cho, In-Goo
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1996
  • We consider the third order linear homogeneous differential equation L$_3$(y) = y(equation omitted) + P($\chi$)y' + Q($\chi$)y = 0 (E) P($\chi$) $\geq$ 0, Q($\chi$) > 0 and P($\chi$)/Q($\chi$) is nondecreasing on [${\alpha}$, $\infty$) for some real number ${\alpha}$. (1) In this paper we discuss the distribution of zeros of solutions and a condition of oscillatory for equation (E).(omitted)

  • PDF

On the Order of Growth of Solutions to Complex Non-homogeneous Linear Differential Equations

  • Habib, Habib;Belaidi, Benharrat
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.819-829
    • /
    • 2016
  • In this paper, we study the order of growth of solutions to the non-homogeneous linear differential equation $$f^{(k)}+A_{k-1}e^{az}f^{(k-1)}+{\cdots}+A_1e^{az}f^{\prime}+A_0e^{az}f=F_1e^{az}+F_2e^{bz}$$, where $A_j(z)$ (${\not\equiv}0$) ($j=0,1,{\cdots},k-1$), $F_j(z)$ (${\not\equiv}0$) (j = 1, 2) are entire functions and a, b are complex numbers such that $ab(a-b){\neq}0$.