• Title/Summary/Keyword: non-linear connection

Search Result 130, Processing Time 0.029 seconds

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

A Study on a Working Pattern Analysis Prototype using Correlation Analysis and Linear Regression Analysis in Welding BigData Environment (용접 빅데이터 환경에서 상관분석 및 회귀분석을 이용한 작업 패턴 분석 모형에 관한 연구)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1071-1078
    • /
    • 2014
  • Recently, information providing service using Big Data is being expanded. Big Data processing technology is actively being academic research to an important issue in the IT industry. In this paper, we analyze a skilled pattern of welder through Big Data analysis or extraction of welding based on R programming. We are going to reduce cost on welding work including weld quality, weld operation time by providing analyzed results non-skilled welder. Welding has a problem that should be invested long time to be a skilled welder. For solving these issues, we apply connection rules algorithms and regression method to much pattern variable for welding pattern analysis of skilled welder. We analyze a pattern of skilled welder according to variable of analyzed rules by analyzing top N rules. In this paper, we confirmed the pattern structure of power consumption rate and wire consumption length through experimental results of analyzed welding pattern analysis.

Phenomena of Nonlinear Dynamics in Space Design (공간조형에 표현된 비선형 동력학 현상)

  • 임은영
    • Archives of design research
    • /
    • v.15 no.4
    • /
    • pp.379-390
    • /
    • 2002
  • Science Revolution, which stands for new paradigm in an era as a transfer, usually is accompanied with a change in intellectual sphere. Futhermore, as there is an indissoluble connection between science and an, so the correlation of two realm lead to mutual prosperity in coexistence. Recently, concerns for the phenomena of non-linear dynamics in science and its quick adaptation in art made .it possible. What is important agenda for science and art is to suggest the process of creative evolution and its method, I believe. In order to attain these, different and contra way of thinking, spirit of research and venture for unpredictable things out of daily routine should be indispensible. In this study, I am offering and reviewing the space design based upon phenomena of nonlinear dynamics, drawn from concept of chaos in physics and mathematics. This study places a great emphasis on nonlinearity which should be understood as a whole, not partially, that enable a designer to find new cosmos and principles of creation. In addition to these, I wish that a designer would stop trying partial apply in nonlinear space. In fine, I hope this study enables a designer to adapt and generate nonlinearity as creative attribute in space by understanding of phenomena of nonlinear dynamics and its process as a whole.

  • PDF

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Study on a Noval Simulation Method of Wind Power Generation System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전시스템의 새로운 시뮬레이션 방법에 관한 연구)

  • 한상근;박민원;유인근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.307-315
    • /
    • 2003
  • This paper proposes a novel simulation method of WPGS (Wind Power Generation System). The rotation speed control method of turbine under variable wind speed using the pitch control is proposed. Moreover, when wind speed exceeds the cut-out wind speed, the turbine will be stopped by controlling pitch angle to 90$^{\circ}$, otherwise it will be controlled to steady-state operation. For the purpose of effective simulation, the SWRW (Simulation method for WPGS using Real Weather condition) is used for the utility interactive WPGS simulation in this paper, in which those of three topics for the WPGS simulation: user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. It is impossible to consider the real weather conditions in the WPGS simulation using the EMTP type of simulators and PSPICE, etc. External parameter of the real weather conditions is necessary to ensure the simulation accuracy. The simulation of the WPGS using the real weather conditions including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC in this paper. The simulation of long-term, short-term, over cut-out and under cut-out wind speeds will be peformed by the proposed simulation method effectively. The efficiency of wind power generator, power converter and flow of energy are analyzed by wind speed of the long-term simulation. The generator output and current supplied into utility can be obtained by the short-term simulation. Finally, transient-state of the WPGS can be analyzed by the simulation results of over cut-out and under cut-out wind speeds, respectively.

Performance Examination and Comparison of Steel Beam-Column Connection in SM570TMC for Mixed-Use (고강도강 혼용 사용을 위한 SM570TMC강 보-기둥 접합부의 성능평가 및 해석 비교)

  • Kim, Moonjeong;Cho, Sukhee;Ha, Tae-Uk;Kang, Chang-Hoon;Choi, Woo-Hyuk;Kim, Jung-Hak
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.22-29
    • /
    • 2013
  • In recent years, the construction of high-rise buildings are promoted. According to these, there are many needs about new technologies to strengthen the building performance and high-strength steel is regarded as one of these for promoting building performance. In Korea, high-strength steels which stress are over 600MPa are on market and in aborad, super high-strength steels over 1000MPa are developing and they expected to promote the building performance. But there are still doubts about applying high-strength steel members because of size effect and worry of brittle fracture. In this reports, we propose results of performance and analysis tests for use with general steel. We propose the characteristic of high-strength steels first and next the results of performance test to show they satisfy the performance that designers expect. And last, we compare the results of test and analysis for acquire the alanysis reliability in non-linear analysis with high-strength steels.

Evaluation on Flexural Performance of Precast Decks with Ribbed Joint by FEM (유한요소해석에 의한 요철형 이음단면을 갖는 프리캐스트 바닥판의 휨성능 평가)

  • Oh, Hyun-Chul;Chung, Chul-Hun;Kang, Myoung-Gu;Park, Se-Jin;Shin, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, a non-linear FEM model is presented to predict the static flexural performance of precast bridge decks with ribbed joint and is verified with previous experiment results through comparison. The several theory of material properties were applied to each mechanical properties in FEM model and FEM model's input variables were determined through experiment result and parametric study. The FEM results showed good accuracy in predicting the structural performance of the specimens and FEM model's average error rate was 5%. Also, each specimen's cracking aspect and failure mode can be predicted through FEM's plastic strain distribution. Thus, this FEM model can be used effectively for predicting the ultimate behavior and parametric study to development of design formula for joint.

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Algorithm for Cross-avoidance Bypass Routing in Numberlink Puzzle (숫자 연결 퍼즐에 관한 교차 회피 우회 경로 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.95-101
    • /
    • 2024
  • The numberlink puzzle(NLP), which non-crossings with other numbers of connection in connecting lines through empty cells between a given pair of numbers, is an NP-complete problem with no known way to solve the puzzle in polynomial time. Until now, arbitrary numbers have been selected and puzzles have been solved using trial-and-error methods. This paper converts empty cells into vertices in lattice graphs connected by edge between adjacent cells for a given problem. Next, a straight line was drawn between the pairs of numbers and divided into groups of numbers where crossing occurred. A bypass route was established to avoid intersection in the cross-number group. Applying the proposed algorithm to 18 benchmarking data showed that the puzzle could be solved with a linear time complexity of O(n) for all data.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.