• Title/Summary/Keyword: non-ductile

Search Result 161, Processing Time 0.026 seconds

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

The Seismic Performance of Non-Ductile Reinforced Concrete (RC) Frames with Engineered Cementitious Composite (ECC) Wing Panel Elements (ECC 날개벽 요소로 보강된 비내진상세를 갖는 철근콘크리트 골조의 내진성능)

  • Kang, Dae-Hyun;Ok, Il-Seok;Yun, Hyun-Do;Kim, Jae-Hwan;Yang, Il-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.541-549
    • /
    • 2015
  • This study was conducted to experimentally investigate the seismic retrofitting performance of non-ductile reinforced concrete (RC) frames by introducing engineered cementitious composite (ECC) wing panel elements. Non-ductile RC frame tested in this study were designed and detailed for gravity loads with insufficient or no consideration to lateral loads. Therefore, Non-ductile RC frame were not satisfied on present seismic code requirements. The precast ECC wing panels were used to improve the seismic structural performance of existing non-ductile RC frame. A series of experiments were carried out to evaluate the structural performance of ECC wing panel elements alone a non-ductile RC frame strengthened by adding ECC panel elements. Failure pattern, strength, stiffness and energy dissipation characteristics of specimens were evaluated based on the test results. The test results show that both lateral strength and stiffness were significantly improved in specimen strengthened than non-ductile RC frame. It is noted that ECC wing wall elements application on non-ductile RC frame can be effective alternative on seismic retrofit of non-ductile building.

Effects of Structure and Defect on Fatigue Limit in High Strength Ductile Irons

  • Kim, Jin-Hak;Kim, Min-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.530-536
    • /
    • 2000
  • In this paper, the influence of several factors such as hardness, internal defect and non-propagating crack on fatigue limits was investigated with three kinds of ductile iron specimens. From the experimental results the fatigue limits were examined in relation with hardness and tensile strength in case of high strength specimens under austempering treatment; in consequence the marked improvement of fatigue limits were not showed. The maximum defect size was an important factor to predict and to evaluate the fatigue limits of ductile irons. And, the quantitative relationship between the fatigue limits$({\sigma}_w)$ and the maximum defect sizes $(\sqrt{area}_{max})$ was expressed as ${\sigma}_w^n{\cdot}{\sqrt{area}}_{max}=C_2$. Also, it was possible to explain the difference for the fatigue limits in three ductile irons by introduction of the non-propagating crack rates.

  • PDF

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Seismic performance of non-ductile detailing RC frames: An experimental investigation

  • Hidayat, Banu A.;Hu, Hsuan-Teh;Hsiao, Fu-Pei;Han, Ay Lie;Pita, Panapa;Haryanto, Yanuar
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2020
  • Non-ductile detailing of Reinforced Concrete (RC) frames may lead to structural failure when the structure is subjected to earthquake response. These designs are generally encountered in older RC frames constructed prior to the introduction of the ductility aspect. The failure observed in the beam-column joints (BCJs) and accompanied by excessive column damage. This work examines the seismic performance and failure mode of non-ductile designed RC columns and exterior BCJs. The design was based on the actual building in Tainan City, Taiwan, that collapsed due to the 2016 Meinong earthquake. Hence, an experimental investigation using cyclic testing was performed on two columns and two BCJ specimens scaled down to 50%. The experiment resulted in a poor response in both specimens. Excessive cracks and their propagation due to the incursion of the lateral loads could be observed close to the top and bottom of the specimens. Joint shear failure appeared in the joints. The ductility of the member was below the desired value of 4. This is the minimum number required to survive an earthquake with a similar magnitude to that of El Centro. The evidence provides an understanding of the seismic failure of poorly detailed RC frame structures.

Strengthening of Non-ductile Reinforced Concrete (RC) frames with Expansive Joint Mortar and H-beam Frame (팽창형 접합부 모르타르와 H형강 프레임에 의한 비내진 상세를 갖는 철근콘크리트 골조의 내진보강)

  • Kim, Ji-Hyeon;Jang, Seok-Joon;Yun, Da-Ae;Kim, Dae-Young;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.127-135
    • /
    • 2019
  • The seismic performance of non-ductile reinforced concrete (RC) frame retrofitted with H-beam frame and cast expansive mortar into joint between existing RC frame and H-beam frame is investigated experimentally and analytically. RC frames considered in the study contain non-ductile reinforcement details of low-rise school building constructed in Korea before 1988. The tests were conducted on half-scale specimens simulating the lower frame assemblages of a typical school building. Two one-bay, one-story RC frames with and without retrofitting with H-beam frame and expansive joint mortar were tested to failure. Test and analysis results indicated that seismic strengthening using H-beam and expansive joint mortar significantly improved the lateral strength and stiffness of non-ductile RC frame without installing anchor bolts to fit H-beam frame into existing RC frame. The effectiveness of seismic strengthening technology proposed in the study for non-ductile RC frame was verified experimentally and analytically.

Energy absorption of fibrous self compacting reinforced concrete system

  • Senthil, K.;Satyanarayanan, K.S.;Rupali, S.
    • Advances in concrete construction
    • /
    • v.4 no.1
    • /
    • pp.37-47
    • /
    • 2016
  • The objective of the present work is to evaluate the influence of two different methods of improving the ductility of Reinforced Concrete Frames and their influence on the full range behavior of the frames with M40 grade of concrete. For this purpose one fourth scale reinforced concrete square frames are experimentally tested subjected to static cyclic loading for three cases and monotonic loading for one case. The parameters are varied as method introducing ductility to the frame viz. (i) by using conventional concrete (ii) adding 1% of steel fibres by volume of concrete at hinging zones (iii) using self-compacting concrete with fibres at hinging zones. The energy absorption by ductile and non-ductile frames has been compared. The behavior of frames tested under cyclic loading have revealed that there is a positive trend in improvement of ductility of frames when fibrous concrete is used along with self-compacting concrete.

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF