• Title/Summary/Keyword: non-destructive reinforcement

Search Result 31, Processing Time 0.018 seconds

Development and Simulation of a Detecting Method using Reflectometry of Electrical Signal (전기적 신호의 반사파 측정법을 적용한 부식 진단 기술의 개발 및 시뮬레이션)

  • Yoon, Seung Hyun;Bang, Su Sik;Shin, Yong-June;Lim, Yun Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.367-372
    • /
    • 2018
  • Defects in aging infrastructures such as pre-stressed concrete bridges and cable bridges can cause a collapse of the entire structure. Defects, however, are often located inside of the structures that they are not visible from the outside. For example, in PSC bridges, because reinforcement steels are encased by exterior covers, corrosion and void on the reinforcement steel cannot be detected with a visual inspection. Therefore, in this paper, a new non-destructive evaluation(NDE) method that can detect defects inside of structures is presented. The new method utilizes sending of electrical signals, a method often utilized in electrical engineering to detect any discontinuities on power cables. In order to confirm the applicability and accuracy of the method, some experiments were conducted in the laboratory. And to overcome the hardship of conducting experiments on real structures due to their enormous size, simualtions were conudcted using a commercial program, COMSOL. The results of the experiments were analyzed and compared to confirm the accuracy of the simualtions.

Air-coupled ultrasonic tomography of solids: 2 Application to concrete elements

  • Hall, Kerry S.;Popovics, John S.
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-43
    • /
    • 2016
  • Applications of ultrasonic tomography to concrete structures have been reported for many years. However, practical and effective application of this tool for nondestructive assessment of internal concrete condition is hampered by time consuming transducer coupling that limits the amount of ultrasonic data that can be collected. This research aims to deploy recent developments in air-coupled ultrasonic measurements of solids, described in Part 1 of this paper set, to concrete in order to image internal inclusions. Ultrasonic signals are collected from concrete samples using a fully air-coupled (contactless) test configuration. These air coupled data are compared to those collected using partial semi-contact and full-contact test configurations. Two samples are considered: a 150 mm diameter cylinder with an internal circular void and a prism with $300mm{\times}300mm$ square cross-section that contains internal damaged regions and embedded reinforcement. The heterogeneous nature of concrete material structure complicates the application and interpretation of ultrasonic measurements and imaging. Volumetric inclusions within the concrete specimens are identified in the constructed velocity tomograms, but wave scattering at internal interfaces of the concrete disrupts the images. This disruption reduces defect detection accuracy as compared with tomograms built up of data collected from homogeneous solid samples (PVC) that are described in Part 1 of this paper set. Semi-contact measurements provide some improvement in accuracy through higher signal-to-noise ratio while still allowing for reasonably rapid data collection.

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Analysis of Surface Contaminants and Physical Properties of the Daejanggakgibi Stele of Silleuksa Temple using Non-destructive Technology (비파괴 기술을 활용한 여주 신륵사 대장각기비의 표면오염물 분석과 물성진단)

  • KIM, Jiyoung;LEE, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.186-197
    • /
    • 2022
  • The Daejanggakgibi Stele of Silleuksa Temple in Yeoju is a stone stele from the Goryeo Dynasty that is inscribed with various stories about the construction of Daejanggak, a place where Buddhist scriptures were kept. This stele has been maintained for a long time in a state in which discoloration of the body has occurred, and the inscription has been partially damaged due to dozens of cracks. Using non-destructive analysis methods for stone artifacts, material investigation, portable X-ray fluorescence analysis, and ultrasonic velocity analysis for the stele were performed. It was confirmed that the stele body was composed of light gray crystalline limestone, and the base stone, support stone, and cover stone were medium-grained biotite granite. Portable X-ray fluorescence analysis confirmed that iron(Fe) was an original coloring element of the stele surface. From the distribution pattern of the coloration, it can be inferred that iron-containing materials flew down from between the stele body and the cover stone. Thereafter, living organisms or organic contaminants attached to it so that yellow and black contaminants were formed. Ultrasonic diagnosis revealed that the physical property of both the front and back surfaces ranged from fresh rocks(FR) to completely weathered rocks(CW), and the average weathering index was grade 3(intermediate). However, the point where cracks developed intensively was judged to be the completely weathered stage(CW), and some cracks located in the upper and lower parts of the stele bear potentially very high risk. It is necessary to monitor the movement of these cracks and establish reinforcement measures for conservation in the future.

Ground Stability Interpretation of the Five-storied Stone Pagoda at the Muryangsa Temple, Korea; An Examined by the Nondestructive Survey (비파괴 탐사를 이용한 무량사오층석탑 지반안정해석)

  • Chae, Sang-Jeong;Suh, Man-Cheol
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.43-54
    • /
    • 2007
  • The Muryangsa temple five-storied stone pagoda (Treasure No. 185) was geographically located in the area of the Baekje Kingdom. The architectural style of the Muryangsa temple five-storied stone pagoda is the pagoda at the early Goryeo Dynasty that was succeeded technique of the Baekje Kingdom and form of the Shilla Kingdom. Because this pagoda is located outside during old time that it received serious petrological and biological weathering in rock blocks and occurred the center subsidence in the upper capstone. This study executed ground stability interpretation in order to know what central subsidence in the upper capstone occurred for soft ground. The ground stability interpretation used seismic survey, electrical resistivity survey and GPR survey by non-destructive method. As the result, the ground appeared in the condition which is good. Specially, high resistance zone appeared from electric resistivity survey which come to seem with ground reinforcement harden. Consequently, central subsidence condition in the upper capstone is not by the instability of ground, and is judged with the thing by the structure instability in rock blocks over the upper capstone. This will be applied basic data with the long-term monitoring or preservation countermeasure of the pagoda.

  • PDF

Estimation of Dynamic Characteristics Before and After Restoration of the Stone Cultural Heritage by Vibration Measurement (진동 측정에 의한 석조문화재 복원 공사 전·후의 동특성 추정)

  • Choi, Jae-Sung;Cho, Cheol-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.103-111
    • /
    • 2021
  • Naju Seokdanggan, Treasure No. 49, was dismantled and reconstructed due to poor performance. During construction, the crack area was reinforced and the inclination was improved. It is necessary to analyze the stiffness changes before and after the reconstruction of these cultural properties, and to establish a database of related information. In addition, there is a need for research on a scientific non-destructive testing method capable of predicting or evaluating the reinforcing effect. In this study, a simple equation for estimating the overall stiffness of the structural system was derived from information on the elasticity coefficient and the natural frequency measured by vibration tests before and after reconstruction work, and the applicability of the equation was examined. If the stiffness of important cultural properties is regularly investigated by the suggested method, it is judged that it can be used as data to estimate the time when structural safety diagnosis is necessary or when repair or reinforcement is necessary.

A Study on the Improvement of the Stability of Small-Scale Manpower Tunnels for Food Storage (식품저장용 소규모 인력터널의 안정성 향상을 위한 방안 연구)

  • Byung Jo Yoon;Sung Yun Park;Ryung Hwan Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.746-753
    • /
    • 2022
  • Purpose: The purpose of this study is to review the safety of small tunnels for food storage excavation in the 1960s~1970s and to improve the stability of small tunnels. Method: A visual inspection and a hammer test were used to conduct safety tests, and the visual inspection is one of the tests conducted for non-destructive testing, and the hammer test is one of the types of hitting methods of rebound hardness. Result: According to the integrated analysis of the survey area data, there are generally good appearance, but there are many small cracks and complex geological conditions, requiring continuous observation and attention. Seven of the 23 tunnels require safety diagnosis, one collapse, one safe, and 14 require continuous observation and attention. Conclusion: All parts of small tunnels should be checked and recorded from time to time, and stability is expected to be improved when reinforcing small tunnels proposed in this study.

A Study on the Flexural Capacity of Reinforced Timber Beams with the Inserting Method of CFRP Plates (탄소섬유판 삽입공법으로 보강된 목재보 휨강도에 관한 연구)

  • Kwon, Ki-Hyuk;Yu, Hye-Ran;Lee, Jin-Hyuk;Choi, Min-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • When historical or cultural buildings need to be repaired or reinforced, the changes of original features should be minimized, and the strengths of structures should be improved. Among the existing methods to reinforce historical wood structures, the carbon fiber reinforcement polymer (CFRP) installation method is one of the best ones to achieve the afore-mentioned requirements. Therefore, this study aims at investigating the reinforcing effects and failure modes of timber beams reinforced with the inserted CFRP, a part of roof trusses in modern wood structures, and at providing the fundamental test data to estimate the CFRP rein-forced timber beam in the application of this reinforcing method. The primary parameters in this study were the layout and amount of CFRP. It was observed that, when $0.3{\sim}0.7%$ of CFRP were installed, the strengths of reinforced timber beams increased up to 173% compared to its original strength, but their strengthening effects were heavily influenced by the characteristics of timber such as burls. In order to improve the applicability of this strengthening method, fundamental understandings on the characteristics of wood would be necessary, and there would be in need of researches on the non-destructive test for wood structures as well.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

Reinforcing Method for the Protective Capacities of Dispersal and Combat Facilities using Logistic Regression (로지스틱 회귀모형을 활용한 소산 및 전투시설의 방호성능 보강방안 연구)

  • Park, Young Jun;Park, Sangjin;Yu, Yeong-Jin;Kim, Taehui;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • This study provides the numerical model to assess retrofit and strengthen levels in the dispersal and combat facilities. First of all, it is verified that direct-hitting projectiles are more destructive to the structures rather than close-falling bombs with explosion tests. The protective capacity of dispersal and combat facilities, which are modeled with soil uncertainty and structural field data, is analyzed through finite element method. With structural survivability and facility data, the logistic regression model is drawn. This model could be used to determine the level of the retrofit and strengthen in the dispersal and combat facilities of contact areas. For more reliable model, it could be better to identify more significant factors and adapt non-linear model. In addition, for adapting this model on the spot, appropriate strengthen levels should be determined by hands on staffs associated with military facilities.