• Title/Summary/Keyword: non-conforming displacement modes

Search Result 13, Processing Time 0.016 seconds

Static and Dynamic Analysis of Plate Structures using an Enhanced Finite Element (개선된 유한요소를 이8한 평판구조물의 정적 및 동적해석)

  • 김선훈;한인선;유승운;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.169-176
    • /
    • 2002
  • This paper is concerned with development of an enhanced quadratic Mindlin plate bending element. The behavior of the proposed plate element is further improved by the coupled use of non-conforming displacement modes, the selectively reduced integration scheme, and the assumed shear strain fields. The improvement may be attributable to the fact that the merits of these improvement techniques are merged in the formation of the new element in a complementary manner. The proposed quadratic finite element passes the patch tests, does not show spurious mechanism, and does not produce shear locking phenomena even with distorted meshes. It is shown that the element produces reliable solutions through numerical tests for standard benchmark problems. It is also noted that the element is applicable to transient dynamic analysis of Mindlin plates.

  • PDF

Analysis of Cantilever Cylindrical Shells with Edge-Stiffeners (캔틸레버 원통형 쉘의 단부보강 해석)

  • Park, Weon-Tae;Son, Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.78-86
    • /
    • 2005
  • In this study, cantilever cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Three models by load conditions are considered. Model A, B and C are loaded by point load at the free edge, line load and external pressure respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced more than 50% for Model A, about $20{\sim}30%$ for Model B by appropriate edge-stiffeners.

A Study on the Ring Effects of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 링 보강효과 연구)

  • Park, Weon-Tae;Choi, Jae-Jin;Son, Byung-Jik
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.94-101
    • /
    • 2004
  • In this study, composite laminated conical shells with ring stiffeners are analyzed. A versatile 4-node shell element which is useful for the analysis of conical shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of Optimum location and optimum section properties of ring stiffeners are obtained. It is shown that the thickness of conical shell is reduced about 20% by optimum ring stiffeners.