• 제목/요약/키워드: non-classical

검색결과 466건 처리시간 0.024초

Combination resonance analysis of FG porous cylindrical shell under two-term excitation

  • Ahmadi, Habib;Foroutan, Kamran
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.253-264
    • /
    • 2019
  • This paper presents the combination resonances of FG porous (FGP) cylindrical shell under two-term excitation. The effect of structural damping on the system response is also considered. With regard to classical plate theory of shells, von-$K{\acute{a}}rm{\acute{a}}n$ equation and Hook law, the relations of stress-strain is derived for shell. According to the Galerkin method, the discretized motion equation is obtained. The combination resonances are obtained by using the method of multiple scales. Four types of FGP distributions consist of uniform porosity, non-symmetric porosity soft, non-symmetric porosity stiff and symmetric porosity distribution are considered. The influence of various porosity distributions, porosity coefficients of cylindrical shell and amplitude excitations on the combination resonances for FGP cylindrical shells is investigated.

Modifying linearly non-separable support vector machine binary classifier to account for the centroid mean vector

  • Mubarak Al-Shukeili;Ronald Wesonga
    • Communications for Statistical Applications and Methods
    • /
    • 제30권3호
    • /
    • pp.245-258
    • /
    • 2023
  • This study proposes a modification to the objective function of the support vector machine for the linearly non-separable case of a binary classifier yi ∈ {-1, 1}. The modification takes into account the position of each data item xi from its corresponding class centroid. The resulting optimization function involves the centroid mean vector, and the spread of data besides the support vectors, which should be minimized by the choice of hyper-plane β. Theoretical assumptions have been tested to derive an optimal separable hyperplane that yields the minimal misclassification rate. The proposed method has been evaluated using simulation studies and real-life COVID-19 patient outcome hospitalization data. Results show that the proposed method performs better than the classical linear SVM classifier as the sample size increases and is preferred in the presence of correlations among predictors as well as among extreme values.

A TECHNIQUE WITH DIMINISHING AND NON-SUMMABLE STEP-SIZE FOR MONOTONE INCLUSION PROBLEMS IN BANACH SPACES

  • Abubakar Adamu;Dilber Uzun Ozsahin;Abdulkarim Hassan Ibrahim;Pongsakorn Sunthrayuth
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.1051-1067
    • /
    • 2023
  • In this paper, an algorithm for approximating zeros of sum of three monotone operators is introduced and its convergence properties are studied in the setting of 2-uniformly convex and uniformly smooth Banach spaces. Unlike the existing algorithms whose step-sizes usually depend on the knowledge of the operator norm or Lipschitz constant, a nice feature of the proposed algorithm is the fact that it requires only a diminishing and non-summable step-size to obtain strong convergence of the iterates to a solution of the problem. Finally, the proposed algorithm is implemented in the setting of a classical Banach space to support the theory established.

BERTRAND CURVES IN NON-FLAT 3-DIMENSIONAL (RIEMANNIAN OR LORENTZIAN) SPACE FORMS

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1109-1126
    • /
    • 2013
  • Let $\mathbb{M}^3_q(c)$ denote the 3-dimensional space form of index $q=0,1$, and constant curvature $c{\neq}0$. A curve ${\alpha}$ immersed in $\mathbb{M}^3_q(c)$ is said to be a Bertrand curve if there exists another curve ${\beta}$ and a one-to-one correspondence between ${\alpha}$ and ${\beta}$ such that both curves have common principal normal geodesics at corresponding points. We obtain characterizations for both the cases of non-null curves and null curves. For non-null curves our theorem formally agrees with the classical one: non-null Bertrand curves in $\mathbb{M}^3_q(c)$ correspond with curves for which there exist two constants ${\lambda}{\neq}0$ and ${\mu}$ such that ${\lambda}{\kappa}+{\mu}{\tau}=1$, where ${\kappa}$ and ${\tau}$ stand for the curvature and torsion of the curve. As a consequence, non-null helices in $\mathbb{M}^3_q(c)$ are the only twisted curves in $\mathbb{M}^3_q(c)$ having infinite non-null Bertrand conjugate curves. In the case of null curves in the 3-dimensional Lorentzian space forms, we show that a null curve is a Bertrand curve if and only if it has non-zero constant second Frenet curvature. In the particular case where null curves are parametrized by the pseudo-arc length parameter, null helices are the only null Bertrand curves.

기주특이성 잡초 활성 미생물을 이용한 잡초방제 기술 (Weed Management Technology with Host Specific of Biological Control Agents)

  • 홍연규;이봉춘;송석보;박성태;김정남;전민구;김인섭
    • 아시안잔디학회지
    • /
    • 제20권2호
    • /
    • pp.175-190
    • /
    • 2006
  • 미생물제재(mycoherbicide)라는 용어는 1970년대부터 사용되기 시작하였다. 하지만 미생물 제재에 대한 관심은 화학제재의 비용증가로 인해 최근 주목을 받게 되었다. 고전적인 생물학적방제재(Biological Control Agent, BCA)는 생태적으로 안전하다는 이유로 생태학적인 관점에서 관심을 끌고 있다. 반면, 현대적인 의미의 생물학적방제재는 인공적으로 배양이 가능하고, 또한 그 잡초방제 효과도 화학제초제와 같은 수준이 요구된다. 현재 미생물제재는 7개국에서 곰팡이로부터 만들어지는 26종이있다. 이들은 재배작물에는 안전한 기주특이성을 갖는다. 그러나 대부분의 약제전달체계는 살아있는 미생물을 활력을 유지한 상태로 장기간 보존할 수 있는 능력을 가지고 있어야 함에도 불구하고 대부분이 조건을 충족시키질 못하였다. 또한, 실험실 수준에서는 방제효과가 잘 나타나지만, 실무적으로 사용할 경우 사용년도 및 포장에 따라 방제효과의 발현성과 지속성이 다르게 나타났다. 이 밖에 미생물제재 사용시 습도, 이슬, 온도 및 이들 요인이 잡초방제에 미치는 효과에 대한 연구결과도 미비한 상태이다. 따라서 잡초방제효과가 뛰어난 미 생물제재를 선별해야한다. 선행된 연구에서 제안된 효과적인 미생물제재의 조건은 첫째, 인공 배양법으로 내구성이 있는 접종원(inoculum)의 대량 생산이 가능하고, 둘째, 유전적으로 안정하면서 기주 특이성이 있고, 셋째, 다양한 범위의 잡초방제효과 있어야 한다. 미생물제재의 생산과 보급은 잡초의 생물학적인 방제에 지대한 역할을 할 수 있다. 액상보다는 입상 형태의 미생물제재가 가벼워서 사용이 간편하며, 젤(gel) 타입의 미생물제재도 사용되는 것으로 알려져 있다.

Forced vibrations of an elastic rectangular plate supported by a unilateral two-parameter foundation via the Chebyshev polynomials expansion

  • Zekai Celep;Zeki Ozcan
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.551-568
    • /
    • 2024
  • The present study deals with static and dynamic behaviors including forced vibrations of an elastic rectangular nano plate on the two-parameter foundation. Firstly, the rectangular plate is assumed to be subjected to uniformly distributed and eccentrically applied concentrated loads. The governing equations of the problem are derived by considering the dynamic response of the plate, employing a series of the Chebyshev polynomials for the displacement function and applying the Galerkin method. Then, effects of the non-essential boundary conditions of the plate, i.e., the boundary conditions related to the shearing forces, the bending moments and the corner forces, are included in the governing equation of motion to compensate for the non-satisfied boundary conditions and increase the accuracy of the Galerkin method. The approximate numerical solution is accomplished using an iterative process due to the non-linearity of the unilateral property of the two-parameter foundation. The plate under static concentrated load is investigated in detail numerically by considering a wide range of parameters of the plate and the foundation stiffnesses. Numerical treatment of the problem in the time domain is carried out by assuming a stepwise variation of the concentrated load and the linear acceleration procedure is employed in the solution of the system of governing differential equations derived from the equation of motion. Time variations of the contact region and those of the displacements of the plate are presented in the figures for various numbers of the two-parameter of the foundation, as well as the classical and nano parameters of the plate particularly focusing on the non-linearity of the problem due to the plate lift-off from the unilateral foundation. The effects of classical and nonlocal parameters and loading are investigated in detail. Definition of the separation between the plate and the two-parameter foundation is presented and applied to the given problem. The effect of the lift-off on the static and dynamic behavior of the rectangular plate is studied in detail by considering various loading conditions. The numerical study shows that the effect of nonlocal parameters on the behavior of the plate becomes significant, when nonlinearity becomes more profound, due to the lift-off of the plate. It is seen that the size effects are significant in static and dynamic analysis of nano-scaled rectangular plates and need to be included in the mechanical analyses. Furthermore, the corner displacement of the plate is affected more significantly from the lift-off, whereas it is less marked in the time variation of the middle displacement of the plate. Several numerical examples are presented to examine the sensibility of various parameters associated with nonlocal parameters of the plate and foundation. Both stiffening and softening nonlocal parameters behavior of the plate are identified in the numerical solutions which show that increasing the foundation stiffness decreases the extent of the contact region, whereas the stiffness of the shear layer increases the contact region and reduces the foundation settlement considerably.

Non-stationary statistical modeling of extreme wind speed series with exposure correction

  • Huang, Mingfeng;Li, Qiang;Xu, Haiwei;Lou, Wenjuan;Lin, Ning
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.129-146
    • /
    • 2018
  • Extreme wind speed analysis has been carried out conventionally by assuming the extreme series data is stationary. However, time-varying trends of the extreme wind speed series could be detected at many surface meteorological stations in China. Two main reasons, exposure change and climate change, were provided to explain the temporal trends of daily maximum wind speed and annual maximum wind speed series data, recorded at Hangzhou (China) meteorological station. After making a correction on wind speed series for time varying exposure, it is necessary to perform non-stationary statistical modeling on the corrected extreme wind speed data series in addition to the classical extreme value analysis. The generalized extreme value (GEV) distribution with time-dependent location and scale parameters was selected as a non-stationary model to describe the corrected extreme wind speed series. The obtained non-stationary extreme value models were then used to estimate the non-stationary extreme wind speed quantiles with various mean recurrence intervals (MRIs) considering changing climate, and compared to the corresponding stationary ones with various MRIs for the Hangzhou area in China. The results indicate that the non-stationary property or dependence of extreme wind speed data should be carefully evaluated and reflected in the determination of design wind speeds.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.

Digital moire 형상측정 시스템의 보정에 관한 연구 (A Study on the Calibration of Shape Measurement System Using Digital moire)

  • 김도훈;유원재;박낙규;강영준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.255-259
    • /
    • 2003
  • Moire topography method isa well-known non-contacting 3-D measurement method as afast non-contact test for three-dimension shape measuring method. Recently, it's important to study the automatic three-dimension measurement by moire topography because it is frequently applied to the reverse engineering , the medical , the entertainment fields. Three-dimension measurement using projection of moire topography is very attractive because of its high measuring speed and high sensitivity. In this paper, the classical moire method is computerized-so called digital moire when a virtual grating pattern is projected on a surface, the captured image by the CCD camera has three-dimension information of the objects. The moire image can be obtained through a simple image processing and a reference grating pattern. and it provides similar results without physical grating pattern. digital projection moire topography turn out to be very effective for the three-dimension measurement of objects. Using different N-bucket algorithm method of digital projection moire topography is tested to measuring object with the 2-ambiguity problem. Experimental results prove that the proposed scheme is capable of finding measurement errors that decreased more by using the four-three step algorithm method instead of the same step in the phase shifting of different pitch.

  • PDF

The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.153-176
    • /
    • 2003
  • From the equation of motion of a "bare" non-uniform beam (without any concentrated elements), an eigenfunction in term of four unknown integration constants can be obtained. When the last eigenfunction is substituted into the three compatible equations, one force-equilibrium equation, one governing equation for each attaching point of the concentrated element, and the boundary equations for the two ends of the beam, a matrix equation of the form [B]{C} = {0} is obtained. The solution of |B| = 0 (where ${\mid}{\cdot}{\mid}$ denotes a determinant) will give the "exact" natural frequencies of the "constrained" beam (carrying any number of point masses or/and concentrated springs) and the substitution of each corresponding values of {C} into the associated eigenfunction for each attaching point will determine the corresponding mode shapes. Since the order of [B] is 4n + 4, where n is the total number of point masses and concentrated springs, the "explicit" mathematical expression for the existing approach becomes lengthily intractable if n > 2. The "numerical assembly method"(NAM) introduced in this paper aims at improving the last drawback of the existing approach. The "exact"solutions in this paper refer to the numerical results obtained from the "continuum" models for the classical analytical approaches rather than from the "discretized" ones for the conventional finite element methods.