DOI QR코드

DOI QR Code

A TECHNIQUE WITH DIMINISHING AND NON-SUMMABLE STEP-SIZE FOR MONOTONE INCLUSION PROBLEMS IN BANACH SPACES

  • Abubakar Adamu (Operational Research Center in Healthcare, Near East University, Mathematics Institute, African University of Science and Technology) ;
  • Dilber Uzun Ozsahin (Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Research Institute for Medical and Health Sciences, University of Sharjah, Operational Research Center in Healthcare, Near East University) ;
  • Abdulkarim Hassan Ibrahim (Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals) ;
  • Pongsakorn Sunthrayuth (Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi)
  • Received : 2023.04.20
  • Accepted : 2023.07.18
  • Published : 2023.12.15

Abstract

In this paper, an algorithm for approximating zeros of sum of three monotone operators is introduced and its convergence properties are studied in the setting of 2-uniformly convex and uniformly smooth Banach spaces. Unlike the existing algorithms whose step-sizes usually depend on the knowledge of the operator norm or Lipschitz constant, a nice feature of the proposed algorithm is the fact that it requires only a diminishing and non-summable step-size to obtain strong convergence of the iterates to a solution of the problem. Finally, the proposed algorithm is implemented in the setting of a classical Banach space to support the theory established.

Keywords

Acknowledgement

This research was supported by Thailand Science Research and Innovation Promotion Funding(TSRI)(Grant no.FRB660012/0168). This research block grants was managed under Rajamangala University of Technology Thanyaburi (FRB66E0628). The authors appreciate the supports of their institutions.

References

  1. H. A. Abass, O. K. Narain and O. M. Onifade, Inertial extrapolation method for solving systems of monotone variational inclusion and fixed point problems using Bregman distance approach, Nonlinear Funct. Anal. Appl., 28(2) (2023), 497-520.
  2. J. A. Abuchu, G. C. Ugunnadi and O. K. Narain, Inertial proximal and contraction methods for solving monotone variational inclusion and fixed point problems, Nonlinear Funct. Anal. Appl., 28(1) (2023), 175-203.
  3. A. Adamu, J. Deepho, A.H. Ibrahim and A.B. Abubakar, Approximation of zeros of sum of monotone mappings with applications to variational inequality and image restoration problems, Nonlinear Funct. Anal. Appl., 26(2) (2021), 411-432.
  4. A. Adamu, D. Kitkuan, P. Kumam, A. Padcharoen and T. Seangwattana, Approximation method for monotone inclusion problems in real Banach spaces with applications, J. Inequal. Appl., 2022(70) (2022), 1-22, https://doi.org/10.1186/s13660-022-02805-0.
  5. A. Adamu, D. Kitkuan, A. Padcharoen, C.E. Chidume and P. Kumam, Inertial viscosity-type iterative method for solving inclusion problems with applications, Math. Comput. Simul., 194 (2022), 445-459. https://doi.org/10.1016/j.matcom.2021.12.007
  6. A. Adamu, P. Kumam, D. Kitkuan and A. Padcharoen, Relaxed modified Tseng algorithm for solving variational inclusion problems in real Banach spaces with applications, Carpathian J. Math., 39(1) (2023), 1-26. https://doi.org/10.1186/s13660-022-02805-0
  7. A. Adamu, P. Kumam, D. Kitkuan and A. Padcharoen, A Tseng-type algorithm for approximating zeros of monotone inclusion and J-fixed point problems with applications, Fixed Point Theory Algo. Sci. Eng., 2023(1) (2023), 1-23. https://doi.org/10.1186/s13663-022-00738-3
  8. Y. Alber and I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Dordrecht: Springer, 2006.
  9. K. Aoyama and F. Kohsaka, Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings, Fixed Point Theory Appl., 2014(1) (2014), 1-13. https://doi.org/10.1186/1687-1812-2014-1
  10. A.U. Bello, C.C. Okeke, M. Isyaku and M.T. Omojola, Forward-reflected-backward splitting method without cocoercivity for the sum of maximal monotone operators in Banach spaces, Optimization, (2022), 1-22.
  11. C.E. Chidume, Strong convergence theorems for bounded accretive operators in uniformly smooth Banach spaces, Contemp. Math., 659 (2016), 31-41. https://doi.org/10.1090/conm/659/13192
  12. C.E. Chidume, A. Adamu and L.O. Chinwendu, Approximation of solutions of Hammerstein equations with monotone mappings in real Banach spaces, Carpathian J. Math., 35(3) (2019), 305-316. https://doi.org/10.37193/CJM.2019.03.05
  13. C.E. Chidume, A. Adamu, P. Kumam and D. Kitkuan, Generalized hybrid viscosity-type forward-backward splitting method with application to convex minimization and image restoration problems, Numer. Funct. Anal. Optim., (2021), 1-23, https://doi.org/10.1080/01630563.2021.1933525.
  14. C.E Chidume, A. Adamu, M.S. Minjibir and U.V. Nnyaba, On the strong convergence of the proximal point algorithm with an application to Hammerstein equations, J. Fixed Point Theory Appl., (2020), 22:61 https://doi.org/10.1007/s11784-020-00793-6.
  15. C.E. Chidume, A. Adamu and M.O. Nnakwe, Strong convergence of an inertial algorithm for maximal monotone inclusions with applications, Fixed Point Theory Appl., (2020), https://doi.org/10.1186/s13663-020-00680-2.
  16. C.E. Chidume, M.O. Nnakwe and A. Adamu, A strong convergence theorem for generalized-φ-strongly monotone maps, with applications, Fixed Point Theory Appl., 2019(1) (2019), 1-19. https://doi.org/10.1186/s13663-018-0651-2
  17. C.E. Chidume, G.S De Souza, U.V. Nnyaba, O.M. Romanus and A. Adamu, Approximation of zeros of m-accretive mappings, with applications to Hammerstein integral equations, Carpathian J. Math., 36(1) (2020), 45-55. https://doi.org/10.37193/CJM.2020.01.05
  18. P. Cholamjiak, N. Pholasa, S. Suantai and P. Sunthrayuth, The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces, Optimization, 70(12) (2021), 2607-2633. https://doi.org/10.1080/02331934.2020.1789131
  19. P. Cholamjiak, P. Sunthrayuth, A. Singta and K. Muangchoo, Iterative methods for solving the monotone inclusion problem and the fixed point problem in Banach spaces, Thai J. Math., 18(3) (2020), 1225-1246.
  20. F. Cui, Y. Tang and Y. Yang, An inertial three-operator splitting algorithm with applications to image inpainting, Applied Set-Valued Anal. Optimization, 1(2) (2019), 113-134. https://doi.org/10.23952/asvao.1.2019.2.03
  21. D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications, Set-valued Var. Anal., 25 (2017), 829-858. https://doi.org/10.1007/s11228-017-0421-z
  22. P. Dechboon A. Adamu and P. Kumam, A generalized Halpern-type forward-backward splitting algorithm for solving variational inclusion problems, AIMS Mathematics, 8(5) (2023), 11037-11056. https://doi.org/10.3934/math.2023559
  23. J. Deepho, A. Adamu, A.H. Ibrahim and A.B. Abubakar, Relaxed viscosity-type iterative methods with application to compressed sensing, J. Analysis, (2023), https://doi.org/10.1007/s41478-022-00547-2.
  24. Z. Hu and Q.L. Dong, A three-operator splitting algorithm with deviations for generalized DC programming, Appl. Numer. Math., 191 (2023), 62-74.
  25. N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization, 37(3) (1996), 239-252. https://doi.org/10.1080/02331939608844217
  26. G. Lopez, V. Martin-Marquez, F. Wang and H.K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., (2012), Article ID 109236, Hindawi, https://doi.org/10.1155/2012/109236.
  27. K. Kankam, W. Cholamjiak and P. Cholamjiak, New inertial forward-backward algorithm for convex minimization with applications, Demon. Math., 56(1) (2023), https://doi.org/10.1515/dema-2022-0188.
  28. K. Kankam, W. Cholamjiak and P. Cholamjiak, Convergence analysis of a modified forward-backward splitting algorithm for minimization and application to image recovery, Comput. Math. Methods, (2022), Article ID 3455998, https://doi.org/10.1155/2022/3455998.
  29. Y. Malitsky and M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optimization, 30(2) (2020), 1451-1472. https://doi.org/10.1137/18M1207260
  30. B. Martinet, Regularisation dinequations variationnelles par approximations successives Rev. Franaise Informat. Recherche Operationnelle, 4 (1970), 154-158.
  31. G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29(4) (1962), 341-346. https://doi.org/10.1215/S0012-7094-62-02933-2
  32. K. Muangchoo, A. Adamu, A.H. Ibrahim and A.B. Abubakar, An inertial Halpern-type algorithm involving monotone operators on real Banach spaces with application to image recovery problems, Comput. Applied Math., (2022), 41:364, https://doi.org/10.1007/s40314-022-02064-1.
  33. S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optimization, 31(1) (2010), 22-44. https://doi.org/10.1080/01630560903499852
  34. R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14(5) (1976), 877-898. https://doi.org/10.1137/0314056
  35. Y. Shehu, Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math., 74(4) (2019), 74:138. https://doi.org/10.1007/s00025-019-1061-4
  36. S. Suantai, P. Cholamjiak and P. Sunthrayuth, Iterative methods with perturbations for the sum of two accretive operators in q-uniformly smooth Banach spaces, RACSAM, 113 (2019), 203-223. https://doi.org/10.1007/s13398-017-0465-9
  37. S. Suantai, K. Kankam and P. Cholamjiak, A projected forward-backward algorithm for constrained minimization with applications to image inpainting, Mathematics, 9(8) (2021), 890, https://doi.org/10.3390/math9080890.
  38. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optimization, 38(2) (2000), 431-446. https://doi.org/10.1137/S0363012998338806
  39. D. Van Hieu, L. Van Vy and P.K. Quy, Three-operator splitting algorithm for a class of variational inclusion problems, Bulletin Iranian Math. Soc., 46(4) (2020), 1055-1071. https://doi.org/10.1007/s41980-019-00312-5
  40. Z.B. Wang, P. Sunthrayuth, A. Adamu and P. Cholamjiak, Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities, Optimization, (2023), 1-35, https://doi.org/10.1080/02331934.2023.2187663.
  41. J. Yang, P. Cholamjiak and P. Sunthrayuth, Modified Tsengs splitting algorithms for the sum of two monotone operators in Banach spaces, AIMS Math., 6(5) (2021), 4873-4900. https://doi.org/10.3934/math.2021286
  42. E.H. Zarantonello, Solving functional equations by contractive averaging, U.S. Army Math. Research Center, Madison, Wisconsin, 1960 Technical Report 160.
  43. C. Zong, Y. Tang and Y.J. Cho, Convergence analysis of an inexact three-operator splitting algorithm, Symmetry, 10(11) (2018), 563, https://doi.org/10.3390/sym10110563.
  44. C. Zong, Y. Tang and G. Zhang, An accelerated forward-backward-half forward splitting algorithm for monotone inclusion with applications to image restoration, Optimization, (2022), 1-28, https://doi.org/10.1080/02331934.2022.2107926.