Acknowledgement
This research was supported by Thailand Science Research and Innovation Promotion Funding(TSRI)(Grant no.FRB660012/0168). This research block grants was managed under Rajamangala University of Technology Thanyaburi (FRB66E0628). The authors appreciate the supports of their institutions.
References
- H. A. Abass, O. K. Narain and O. M. Onifade, Inertial extrapolation method for solving systems of monotone variational inclusion and fixed point problems using Bregman distance approach, Nonlinear Funct. Anal. Appl., 28(2) (2023), 497-520.
- J. A. Abuchu, G. C. Ugunnadi and O. K. Narain, Inertial proximal and contraction methods for solving monotone variational inclusion and fixed point problems, Nonlinear Funct. Anal. Appl., 28(1) (2023), 175-203.
- A. Adamu, J. Deepho, A.H. Ibrahim and A.B. Abubakar, Approximation of zeros of sum of monotone mappings with applications to variational inequality and image restoration problems, Nonlinear Funct. Anal. Appl., 26(2) (2021), 411-432.
- A. Adamu, D. Kitkuan, P. Kumam, A. Padcharoen and T. Seangwattana, Approximation method for monotone inclusion problems in real Banach spaces with applications, J. Inequal. Appl., 2022(70) (2022), 1-22, https://doi.org/10.1186/s13660-022-02805-0.
- A. Adamu, D. Kitkuan, A. Padcharoen, C.E. Chidume and P. Kumam, Inertial viscosity-type iterative method for solving inclusion problems with applications, Math. Comput. Simul., 194 (2022), 445-459. https://doi.org/10.1016/j.matcom.2021.12.007
- A. Adamu, P. Kumam, D. Kitkuan and A. Padcharoen, Relaxed modified Tseng algorithm for solving variational inclusion problems in real Banach spaces with applications, Carpathian J. Math., 39(1) (2023), 1-26. https://doi.org/10.1186/s13660-022-02805-0
- A. Adamu, P. Kumam, D. Kitkuan and A. Padcharoen, A Tseng-type algorithm for approximating zeros of monotone inclusion and J-fixed point problems with applications, Fixed Point Theory Algo. Sci. Eng., 2023(1) (2023), 1-23. https://doi.org/10.1186/s13663-022-00738-3
- Y. Alber and I. Ryazantseva, Nonlinear ill-posed problems of monotone type, Dordrecht: Springer, 2006.
- K. Aoyama and F. Kohsaka, Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings, Fixed Point Theory Appl., 2014(1) (2014), 1-13. https://doi.org/10.1186/1687-1812-2014-1
- A.U. Bello, C.C. Okeke, M. Isyaku and M.T. Omojola, Forward-reflected-backward splitting method without cocoercivity for the sum of maximal monotone operators in Banach spaces, Optimization, (2022), 1-22.
- C.E. Chidume, Strong convergence theorems for bounded accretive operators in uniformly smooth Banach spaces, Contemp. Math., 659 (2016), 31-41. https://doi.org/10.1090/conm/659/13192
- C.E. Chidume, A. Adamu and L.O. Chinwendu, Approximation of solutions of Hammerstein equations with monotone mappings in real Banach spaces, Carpathian J. Math., 35(3) (2019), 305-316. https://doi.org/10.37193/CJM.2019.03.05
- C.E. Chidume, A. Adamu, P. Kumam and D. Kitkuan, Generalized hybrid viscosity-type forward-backward splitting method with application to convex minimization and image restoration problems, Numer. Funct. Anal. Optim., (2021), 1-23, https://doi.org/10.1080/01630563.2021.1933525.
- C.E Chidume, A. Adamu, M.S. Minjibir and U.V. Nnyaba, On the strong convergence of the proximal point algorithm with an application to Hammerstein equations, J. Fixed Point Theory Appl., (2020), 22:61 https://doi.org/10.1007/s11784-020-00793-6.
- C.E. Chidume, A. Adamu and M.O. Nnakwe, Strong convergence of an inertial algorithm for maximal monotone inclusions with applications, Fixed Point Theory Appl., (2020), https://doi.org/10.1186/s13663-020-00680-2.
- C.E. Chidume, M.O. Nnakwe and A. Adamu, A strong convergence theorem for generalized-φ-strongly monotone maps, with applications, Fixed Point Theory Appl., 2019(1) (2019), 1-19. https://doi.org/10.1186/s13663-018-0651-2
- C.E. Chidume, G.S De Souza, U.V. Nnyaba, O.M. Romanus and A. Adamu, Approximation of zeros of m-accretive mappings, with applications to Hammerstein integral equations, Carpathian J. Math., 36(1) (2020), 45-55. https://doi.org/10.37193/CJM.2020.01.05
- P. Cholamjiak, N. Pholasa, S. Suantai and P. Sunthrayuth, The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces, Optimization, 70(12) (2021), 2607-2633. https://doi.org/10.1080/02331934.2020.1789131
- P. Cholamjiak, P. Sunthrayuth, A. Singta and K. Muangchoo, Iterative methods for solving the monotone inclusion problem and the fixed point problem in Banach spaces, Thai J. Math., 18(3) (2020), 1225-1246.
- F. Cui, Y. Tang and Y. Yang, An inertial three-operator splitting algorithm with applications to image inpainting, Applied Set-Valued Anal. Optimization, 1(2) (2019), 113-134. https://doi.org/10.23952/asvao.1.2019.2.03
- D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications, Set-valued Var. Anal., 25 (2017), 829-858. https://doi.org/10.1007/s11228-017-0421-z
- P. Dechboon A. Adamu and P. Kumam, A generalized Halpern-type forward-backward splitting algorithm for solving variational inclusion problems, AIMS Mathematics, 8(5) (2023), 11037-11056. https://doi.org/10.3934/math.2023559
- J. Deepho, A. Adamu, A.H. Ibrahim and A.B. Abubakar, Relaxed viscosity-type iterative methods with application to compressed sensing, J. Analysis, (2023), https://doi.org/10.1007/s41478-022-00547-2.
- Z. Hu and Q.L. Dong, A three-operator splitting algorithm with deviations for generalized DC programming, Appl. Numer. Math., 191 (2023), 62-74.
- N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization, 37(3) (1996), 239-252. https://doi.org/10.1080/02331939608844217
- G. Lopez, V. Martin-Marquez, F. Wang and H.K. Xu, Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal., (2012), Article ID 109236, Hindawi, https://doi.org/10.1155/2012/109236.
- K. Kankam, W. Cholamjiak and P. Cholamjiak, New inertial forward-backward algorithm for convex minimization with applications, Demon. Math., 56(1) (2023), https://doi.org/10.1515/dema-2022-0188.
- K. Kankam, W. Cholamjiak and P. Cholamjiak, Convergence analysis of a modified forward-backward splitting algorithm for minimization and application to image recovery, Comput. Math. Methods, (2022), Article ID 3455998, https://doi.org/10.1155/2022/3455998.
- Y. Malitsky and M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optimization, 30(2) (2020), 1451-1472. https://doi.org/10.1137/18M1207260
- B. Martinet, Regularisation dinequations variationnelles par approximations successives Rev. Franaise Informat. Recherche Operationnelle, 4 (1970), 154-158.
- G.J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29(4) (1962), 341-346. https://doi.org/10.1215/S0012-7094-62-02933-2
- K. Muangchoo, A. Adamu, A.H. Ibrahim and A.B. Abubakar, An inertial Halpern-type algorithm involving monotone operators on real Banach spaces with application to image recovery problems, Comput. Applied Math., (2022), 41:364, https://doi.org/10.1007/s40314-022-02064-1.
- S. Reich and S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optimization, 31(1) (2010), 22-44. https://doi.org/10.1080/01630560903499852
- R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, 14(5) (1976), 877-898. https://doi.org/10.1137/0314056
- Y. Shehu, Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math., 74(4) (2019), 74:138. https://doi.org/10.1007/s00025-019-1061-4
- S. Suantai, P. Cholamjiak and P. Sunthrayuth, Iterative methods with perturbations for the sum of two accretive operators in q-uniformly smooth Banach spaces, RACSAM, 113 (2019), 203-223. https://doi.org/10.1007/s13398-017-0465-9
- S. Suantai, K. Kankam and P. Cholamjiak, A projected forward-backward algorithm for constrained minimization with applications to image inpainting, Mathematics, 9(8) (2021), 890, https://doi.org/10.3390/math9080890.
- P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optimization, 38(2) (2000), 431-446. https://doi.org/10.1137/S0363012998338806
- D. Van Hieu, L. Van Vy and P.K. Quy, Three-operator splitting algorithm for a class of variational inclusion problems, Bulletin Iranian Math. Soc., 46(4) (2020), 1055-1071. https://doi.org/10.1007/s41980-019-00312-5
- Z.B. Wang, P. Sunthrayuth, A. Adamu and P. Cholamjiak, Modified accelerated Bregman projection methods for solving quasi-monotone variational inequalities, Optimization, (2023), 1-35, https://doi.org/10.1080/02331934.2023.2187663.
- J. Yang, P. Cholamjiak and P. Sunthrayuth, Modified Tsengs splitting algorithms for the sum of two monotone operators in Banach spaces, AIMS Math., 6(5) (2021), 4873-4900. https://doi.org/10.3934/math.2021286
- E.H. Zarantonello, Solving functional equations by contractive averaging, U.S. Army Math. Research Center, Madison, Wisconsin, 1960 Technical Report 160.
- C. Zong, Y. Tang and Y.J. Cho, Convergence analysis of an inexact three-operator splitting algorithm, Symmetry, 10(11) (2018), 563, https://doi.org/10.3390/sym10110563.
- C. Zong, Y. Tang and G. Zhang, An accelerated forward-backward-half forward splitting algorithm for monotone inclusion with applications to image restoration, Optimization, (2022), 1-28, https://doi.org/10.1080/02331934.2022.2107926.