• Title/Summary/Keyword: non-circular

Search Result 650, Processing Time 0.027 seconds

Three-dimensional Behavior and Strength Characteristics of Cubical Hal-dening Materials. (입방체경화재료의 삼차원거동 및 강도특성)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.19-28
    • /
    • 1989
  • This study has been carried out as a fundamental course for the analysis of the constitutive- equation for the materials like sands being hardened during Ehear. For this aim, experimentall tests with variable stress paths for the concrete material are performed using the cubical multi- axial test in which the three principle stresses are arbitrarily controlled. Stress-strain behaviors. and strength characteristics are suggested in octahedral planes. Various tests such as HC, CTC, . TC, 55 are performed. The main results summarized are as follows; 1. The order of strength from the largest to the smallest is CTC, TC, SS, and TE test. 2. The octahedral Ehear strength of concrete specimens is dependent upon the stress path(8) 3. There is a direct relation between strength and confining pressure. 4. The ultimate envelopes in the octahedral planes are non-circular-cone shaped. 5. Any ultimate criteria used to predict the strength behavior of concrete must include thin effect of the tensile stresses.

  • PDF

Direct Stacking of Non-metallic Planar Porphyrin to DNA

  • Lee, Min-Ju;Jin, Biao;Lee, Hyun-Mee;Jung, Maeng-Joon;Kim, Seog K.;Kim, Jong-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1533-1538
    • /
    • 2008
  • Porphyrins generally bind DNA in two different ways with respect to the mixing ratio; monomeric binding at a low mixing ratio and outside stacking at a high mixing ratio. In the present study, CTDNA binding property of a planar structured porphyrin, 5,10,15,20-tetrakis(N-methyl-4-pyridin-4-yl-phenyl)porphyrin (referred to as B-TMPyP) was investigated using absorption, CD, LD, and $LD^r$ spectroscopies. B-TMPyP produced a bisignate CD band, even at the lowest mixing ratio, indicating that B-TMPyP may not have a monomeric binding mode. From the observations of the spectral changes to the absorption, CD, and LD spectra in mixing ratio dependent titrations, B-TMPyP seems to have a quite different stacking type compared to that for the binding of $H_2$TMPyP. Moreover, B-TMPyP produced a CD band of opposite shape in the Soret band region. A qualitative explanation for the observed optical differences is also given.

2-TYPE SURFACES AND QUADRIC HYPERSURFACES SATISFYING ⟨∆x, x⟩ = const.

  • Jang, Changrim;Jo, Haerae
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.571-585
    • /
    • 2017
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigen vectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we showed that a 2-type surface M in $E^3$ satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle},{\rangle}$ is the usual inner product in $E^3$, then M is an open part of a circular cylinder. Also we showed that if a quadric hypersurface M in a Euclidean space satisfies ${\langle}{\Delta}x,x{\rangle}=c$ for a constant c, then it is one of a minimal quadric hypersurface, a genaralized cone, a hypersphere, and a spherical cylinder.

A CAD/CAM System for Steam Paths of Turbine Generators (터빈발전기의 Steam Path 전용 CAD/CAM시스템)

  • Kim Y. I.;Kim D. S.;Jun C. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.4
    • /
    • pp.254-261
    • /
    • 2005
  • The purpose of this research is to develop a method for cutting non-circular holes on a bent thick plate. Generally in order to cut the holes on the large plates, a special-purpose 5-axis machine is needed. However, such a machine is unavailable in most of the machine shops. This paper provides a description of such a method that utilizes a general-purpose 5-axis water-jet machine in place of the special-purpose machine: First, the bent piece is transformed into a flat plate, where the shape of the holes is reconstructed by considering deformation during bending. Then, after a 5-axis NC data is generated, the holes on the flat plate are cut using the 5-axis water-jet machine. The final step is to return to its, original shape by bending the plate with its newly-cut holes. The proposed methodology is implemented as a dedicated system by customizing a commercial CAD/CAM system. Some illustrations are provided throughout the paper in order to show the validity of the proposed methods and the developed system.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME (Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구)

  • Cho, M.W.;Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

A Study on Characteristics of Precession Motion for a Smart Munition (지능형 탄두의 세차운동 특성 해석 및 연구)

  • Ha, Do-Jun;Kim, Byoung-Soo;Kim, In-Keun;Song, Ho-In;Lee, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.257-265
    • /
    • 2012
  • This paper presents a study on characteristics of precession motion of a smart munition. It's a kind of the Sensor Fuzed Weapon. The particular thing for the smart munition is that it has precession motion in the air while the sensor is searching the ground to detect ground vehicles such as tanks. The smart munition has a cylindrical shape and has a sensor attached on its side. Due to its non-uniform mass distribution, its center of gravity(CG) is located away from the center of volume(CV). In order for the smart munition to detect the target effectively, the ground searching pattern of sensor should have an uniform circular form, and for this, the precession motion of smart munition should be in its steady-state. Finally, it is necessary to choose the right initial conditions at the moment of firing, for the steady-state precession motion during flight.

Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept (고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석)

  • Lee Sung-ho;Rhim Yoon-chul
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

Structural design of steel fibre reinforced concrete in-filled steel circular columns

  • Eltobgy, Hanan H.
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.267-282
    • /
    • 2013
  • This paper presents the behavior and design of axially loaded normal and steel fiber reinforced concrete in-filled steel tube (SFRCFT) columns, to examine the contribution of steel fibers on the compressive strength of the composite columns. Non-linear finite element analysis model (FEA) using ANSYS software has been developed and used in the analysis. The confinement effect provided by the steel tube is considered in the analysis. Comparisons of the analytical model results, along with other available experimental outputs from literature have been done to verify the structural model. The compressive strength and stiffness of SFRC composite columns were discussed, and the interpretation of the FEA model results has indicated that, the use of SFRC as infill material has a considerable effect on the strength and stiffness of the composite column. The analytical model results were compared with the existing design methods of composite columns - (EC4, AISC/LRFD and the Egyptian code of Practice for Steel Construction, ECPSC/LRFD). The comparison indicated that, the results of the FEA model were evaluated to an acceptable limit of accuracy. The code design equations were modified to introduce the steel fiber effect and compared with the results of the FEA model for verification.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF