• 제목/요약/키워드: non-aqueous phase liquid

검색결과 46건 처리시간 0.031초

이액상 시스템에서 토양으로부터 비수용성 액체로의 PAHs의 이동특성

  • 양지원;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.247-249
    • /
    • 2002
  • The transfer behaviors of three Polyarmatic hydrocarbons (PAHs) from soil to non-aqueous phase liquid (NAPL) were investigated. The three different PAHs were phenanthrene, anthracene, and pyrene. The used NAPLs were silicone oil and paraffine oil. The percentage of the remained PAHs into soil were similar without the relation to kinds of NAPLs. And the transfer of PAHs into NAPLs was fastened until 1 day as the increase of mixing rate but in the case of 450 rpm, the remained PAHs into soil was increased after 1 day because NAPLs was emulsified.

  • PDF

Effect of rheological properties on chemical absorption of carbon dioxide with MEA

  • Park, Sang-Wook;Kim, Tae-Young;Park, Byoung-Sik;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.35-45
    • /
    • 2004
  • Rates of chemical absorption of $CO_2$ in water-in-oil (w/o) emulsion were measured in a flat-stirred vessel at $25^{\circ}C$. The w/o emulsion was composed of aqueous monoethanolamine (MEA) droplets as a dispersed phase and non-Newtonian viscoelastic benzene solutions of polybutene (PB) and polyisobutylene (PIB) as a continuous phase. The liquid-side-mass transfer coefficient ($k_L$) was obtained from the dimensionless empirical equation containing Deborah number expressed as the properties of pseudoplasticity of the non-Newtonian liquid. $k_L$ was used to estimate the enhancement factor due to chemical reaction between $CO_2$ and MEA in the aqueous phase. PIB with elastic property of non-Newtonian liquid made the rate of chemical absorption of $CO_2$ accelerate compared with Newtonian liquid.

수직관내 리튬브로마이드 수용액막의 흡수과정에 대한 비흡수가스의 영향 (Effects of Non-Absorbable Gases on the Absorption Process of Aqueous LiBr Solution Film in a Vertical Tube (II))

  • 김병주;이찬우
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.499-509
    • /
    • 1998
  • In the absorption process of water vapor in a liquid film, the composition of the gas phase, in which a non-absorbable gas is combined with the absorbate influences the transport characteristics remarkably. In the present study, the absorption processes of water vapor into aqueous solution of lithium bromide in the presence of non-absorbable gases were investigated analytically. The continuity, momentum, energy and diffusion equations for the solution film and gas phase were formulated in integral forms and solved numerically. It was found that the mass transfer resistance in gas phase increased with the concentration of non-absorbable gas. However the primary resistance to mass transfer was in the liquid phase. As the concentration of non-absorbable gas in the absorbate increased, the liquid-vapor interfacial temperature and concentration of absorbate in solution decreased, which resulted in the reduction of absorption rate. The reduction of mass transfer rate was found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of an absorber where non-absorbable gases accumulated. At higher non-absorbable gas concentration, the decrease of absorption flux was almost linear to the volumetric concentration of non-absorbable gas.

THE STUDY ON STABLE EMULSION SYSTEM AND SELECTIVE ADDITION OF ACTIVE INGREDIENT IN W/O/W ONE STEP MULTIPLE EMULSION

  • Kim, Se-gie;Park, Hee-nam;Kim, Tae-kyoo
    • 대한화장품학회지
    • /
    • 제24권3호
    • /
    • pp.96-104
    • /
    • 1998
  • It was possible to produce W/O/W one step multiple emulsion on the system which satisfied following conditions. 1. 1-5% of hydrophilic liquid surfactant over HLB20 and lipophilic liquid surfactant which has HLB 3∼5 2. Non wax copolymers as oil thickener 3. More than 0.5% of carbomer as aqueous thickener 4. The manufacturing process which neutralize the dispersed carbomer (2.0% in water), after emulsifying. For the selective addition into inner and outer aqueous phase, we melted the glucose in water before emulsifying. Using an Anthrone analysis method, we analyzed the encapsulation yield of glucose in inner water phase. It was possible to raise the water encapsulation yield of the multiple emulsion through the following conditions. 1. Using of anionic hydrophilic surfactant(HLB 40) and lipophilic surfactant (HLB 3∼5) 2. Controlling the ratio of hydrophilic surfactant and lipophilic surfactant 3. Strengthening interface with increase of non wax oil thickener. When the separated adding process of glucose was adopted, approximately 85% of glucose was added selectively within inner aqueous phase.

  • PDF

계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발 (Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area)

  • 석희준;손봉호;박성민;전병훈
    • 청정기술
    • /
    • 제25권3호
    • /
    • pp.206-222
    • /
    • 2019
  • 최근에는 다양한 다상오염물 거동 흐름 모델들이 개발되었고 일부는 상용화되기도 하였으나, 대부분이 압력기저접근방식을 갖고 개발된 프로그램들이므로 다양한 수치적 어려움을 내재하고 있다. 이러한 수치적 어려움을 극복하기 위해서는 분율흐름접근방식을 따르는 기존 다상흐름거동 수치모델로 개발된 MultiPhaSe flow (MPS) 모델에 계면활성제에 의한 용해 현상을 모사할 수 있는 오염물 거동 모듈을 결합해서 MultiPhaSe flow and TranSport (MPSTS) 프로그램을 본 연구에서 개발하였다. 개발된 모델은 Clement의 해석 해를 사용하여 검증하였다. 여기서 MPSTS프로그램은 입자추적법과 결합한 라그랑지안-율러리안 기법을 이용해서 상간물질전달 효과와 다상내 오염물 거동 기능을 결합한 계면활성제 활용 복원과정을 모사할 수 있는 프로그램이다. 본 연구에서는 개발된 모델을 이용해서 소수성 액체(non aqueous phase liquid, NAPL)로 오염된 지역의 계면활성제에 의한 오염 정화 시 층상구조를 가지는 수리지질학적 불 균질성이 복원효율에 미치는 영향을 수치 모의 하였다. 수치모의 결과, 하부 층의 수리전도도가 상부 층의 수리전도도보다 10배, 20배, 50배로 큰 경우에 대해서 하부에서 물속에 용해된 디젤의 농도가 높게 나타난다. 왜냐하면 계면활성제가 하부 층을 따라서 좀 더 빨리 움직여서 하부 층에서 잔류 소수성 액체를 좀 더 많이 용해시켰기 때문이다.

Pervaporation Separation of Binary Organic-Aqueous Liquid Mixtures

  • Rhim, Ji-Won;Huang, Robert Y.M.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1991년도 추계 총회 및 학술발표회
    • /
    • pp.1-3
    • /
    • 1991
  • A novel membrane separation process for the separation of liquid mixture is Pervaporation. The term, 'pervaporation', is a combination of permeation and evaporation, and was first introduced by kober[1] in 1917. In this technique, the liquid mixture in feed is in contact with one side of a dense non-porous membrane and after diffusing through the membrane is removed from the downstream side in the vapor phase, but is usually condensed afterwards to obtain a permeate in liquid from.

  • PDF

W/O 에멀션액막에서 이산화탄소와 AMP의 화학반응 (Chemical Reaction of Carbon Dioxide with AMP in w/o Emulsion Membrane)

  • 박상욱;최병식;김성수;이재욱
    • 멤브레인
    • /
    • 제14권4호
    • /
    • pp.275-288
    • /
    • 2004
  • 본 연구에서는 준 회분식 교반조를 사용하여 polybutene (PB)와 polyisobutylene (PIB)고분자를 용해한 벤젠 용액을 연속상, 물을 불연속상으로 구성한 w/o 에멀션액막에 $CO_2$을 흡수시켜 흡수속도를 측정하였다. 점탄성을 나타내는 Deborah 수를 사용하여 점탄성 비뉴튼액체에서 구한 부피물질전달계수 ($k_La$)를 고찰하고, 수용액에 첨가한 2-amino-2-methyl-1-propanol(AMP)와 $CO_2$의 반응 메카니즘을 해석하였다.

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Determination of Non-Steroidal Anti-Inflammatory Drugs in Human Urine Sample using HPLC/UV and Three Phase Hollow Fiber-Liquid Phase Microextraction (HF-LPME)

  • Cha, Yong Byoung;Myung, Seung-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3444-3450
    • /
    • 2013
  • Three phase hollow fiber-liquid phase microextraction (HF-LPME), which is faster, simpler and uses a more environmentally friendly sample-preparation technique, was developed for the analysis of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in human urine. For the effective simultaneous extraction/concentration of NSAIDs by three phase HF-LPME, parameters (such as extraction organic solvent, pH of donor/acceptor phase, stirring speed, salting-out effect, sample temperature, and extraction time) which influence the extraction efficiency were optimized. NSAIDs were extracted and concentrated from 4 mL of aqueous solution at pH 3 (donor phase) into dihexyl ether immobilized in the wall pores of a porous hollow fiber, and then extracted into the acceptor phase at pH 13 located in the lumen of the hollow fiber. After the extraction, 5 ${\mu}L$ of the acceptor phase was directly injected into the HPLC/UV system. Simultaneous chromatographic separation of seven NSAIDs was achieved on an Eclipse XDB-C18 (4.6 mm i.d. ${\times}$ 150 mm length, 5 ${\mu}m$ particle size) column using isocratic elution with 0.1% formic acid and methanol (30:70) at a HPLC-UV/Vis system. Under optimized conditions (extraction solvent, dihexyl ether; $pH_{donor}$, 3; $pH_{acceptor}$, 13; stirring speed, 1500 rpm; NaCl salt, 10%; sample temperature, $60^{\circ}C$; and extraction time, 45 min), enrichment factors (EF) were between 59 and 260. The limit of detection (LOD) and limit of quantitation (LOQ) in the spiked urine matrix were in the concentration range of 5-15 ng/mL and 15-45 ng/mL, respectively. The relative recovery and precision obtained were between 58 and 136% and below 15.7% RSD, respectively. The calibration curve was linear within the range of 0.015-0.96 ng/mL with the square of the correlation coefficient being more than 0.997. The established method can be used to analyse of NSAIDs of low concentration (ng/mL) in urine.