• 제목/요약/키워드: non-Newtonian flow

검색결과 211건 처리시간 0.025초

Zr계 비정질 합금의 고온 변형거동과 성형성 예측 (High Temperature Deformation Behavior and Estimation for Formability of Zr55Cu30Al10Ni5 Bulk Metallic Glass)

  • 전현준;이광석;장영원
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.309-312
    • /
    • 2007
  • Deformation behavior of $Zr_{55}Cu_{30}Al_{10}Ni_5$(at. %) bulk metallic glass(BMG) fabricated by suction casting method has been investigated at elevated temperatures in this study. The BMG was first verified to have an amorphous structure with the analysis of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) data. A series of compression tests has consequently been performed in the region of supercooled liquid temperature to investigate the behavior of high temperature deformation. A transition from Newtonian to non-Newtonian flow appeared to take place depending upon both the strain rate and test temperature. A processing map based on a dynamic materials model has been constructed to estimate a feasible forming condition for this BMG alloy.

Rheological properties of arabinogalactan solutions related to the carbohydrate composition of different legumes

  • Kyeongyee Kim;Choon Young Kim
    • 한국식품저장유통학회지
    • /
    • 제30권5호
    • /
    • pp.785-796
    • /
    • 2023
  • The aim of this study was to elucidate chemical structures and rheological properties of arabinogalactans (AGs) isolated from three legumes including black gram (BG), great northern bean (GNB), and California small white bean (CSWB). The ratio of galactose to arabinose (G/A) in three legumes increased in the order of BG > GNB > CSWB. The rheological measurements of 1-5% (w/v) AG solutions revealed Newtonian and non-Newtonian flow behaviors. BG exhibited yield stress, indicating plastic behavior. Small-amplitude oscillatory tests indicated viscoelastic properties of BG, GNB, and CSWB ranging from solid-like, paste-like, and liquid-like behaviors, respectively. Small-strain oscillatory tests were conducted to assess the structure recovery of the AGs after pre-shearing. G" values of BG and GNB increased, but those of CSWB remained constant after shearing. These results suggest that the chemical structures of the AGs, particularly their G/A ratios, influence their rheological properties.

Changes of Blood Flow Characteristics due to Catheter Obstruction during the Coronary Angioplasty

  • Suh, Sang-Ho;Roh, Hyung-Woon;Kwon, Hyuck-Moon;Lee, Byoung-Kwon
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 2004
  • Catheters are used to measure translesional pressure gradients in the stenosed coronary arteries. Uses of catheters during coronary angioplasty cause flow obstructions. A narrowed flow cross section with catheter effectively introduced a tighter stenosis than the enlarged residual stenoses after balloon angiplasty. Catheters in blood vessels cause pressure gradient rise and blood flow drop during the measurements. In this study, three dimensional computer simulations are conducted to investigate the flow blockage effects due to the catheter obstructions during the coronary angioplasty. The computer simulation models are generated by the data, which are measured by coronary angiogram, and the blood is treated as non-Newtonian fluid. The velocity, pressure, and wall shear stress variations are observed for the estimate of damages of blood vessel. This study is also extended to investigate the effects of stenotic vessel size, and shape and catheter size and location.

  • PDF

비정상유동장에서 모세관점도계의 점도측정 (Viscosity Measurement in the Capillary Tube Viscometer under Unsteady Flow)

  • 박흥준;유상신;서상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.825-828
    • /
    • 2000
  • The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load celt system oat measures the mass flow rate, interfacers, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and. driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force.

  • PDF

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석 (Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect)

  • 손창현;안성태;장재환
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • 제12권2호
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계 (Dynamics and die design in continuous and patch slot coating processes)

  • 김수연;심서훈;신동명;이주성;정현욱;현재천
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

단축 스크류 압출기 내의 비뉴턴유체에 대한 3차원 열 및 유동해석 (Three-Dimensional Heat and Fluid Flow Simulations for Non-Newtonian Fluid in a Single Screw Extruder)

  • 곽동성;김우승;류민영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.337-342
    • /
    • 2001
  • A numerical study of three-dimensional fluid flow and heat transfer in the metering section of a single screw extruder has been performed. The mathematical model for the screw channel is simplified by unwound channel and fixing the coordinate system to the screw. The pressure boundary and the prescribed mass flow rate conditions are imposed on the inlet and outlet, respectively. The commercial code STAR-CD based on the finite volume method is used to obtain the results of the present work. The computation of the reverse flow, which cannot be computed by the marching-type 3-D model, is performed in the present study.

  • PDF

Element-free simulation of dilute polymeric flows using Brownian Configuration Fields

  • Tran-Canh, D.;Tran-Cong, T.
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2004
  • The computation of viscoelastic flow using neural networks and stochastic simulation (CVFNNSS) is developed from the point of view of Eulerian CONNFFESSIT (calculation of non-Newtonian flows: finite elements and stochastic simulation techniques). The present method is based on the combination of radial basis function networks (RBFNs) and Brownian configuration fields (BCFs) where the stress is computed from an ensemble of continuous configuration fields instead of convecting discrete particles, and the velocity field is determined by solving the conservation equations for mass and momentum with a finite point method based on RBFNs. The method does not require any kind of element-type discretisation of the analysis domain. The method is verified and its capability is demonstrated with the start-up planar Couette flow, the Poiseuille flow and the lid driven cavity flow of Hookean and FENE model materials.