Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul (Department of Mechanical Engineering, Chung-Ang University) ;
  • Ryou, Hong-Sun (Department of Mechanical Engineering, Chung-Ang University)
  • Published : 2009.09.30

Abstract

This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Keywords

References

  1. Adams, J. A., J. A. Bassuk, J. Aris, H. Wu, V. Jorapur, G. A. Lamas and P. Kurlansky, 2008, Acute effects of 'delayed postconditioning' with periodic acceleration after asphyxia induced shock in pigs, Pediatr. Res. 64, 533-537 https://doi.org/10.1203/PDR.0b013e318183f147
  2. Adams, J. A., M. J. Mangino, J. Bassuk, P. Kurlansky and M. A. Sackner, 2001, Regional blood flow during periodic acccleration, Crit. Care Med. 29, 1983-1988 https://doi.org/10.1097/00003246-200110000-00022
  3. Arntzenius, A. C., J. Koops, F. A. Rodrigo, H. Elsbach and A. G. Brurnmelen, 1969, Circulatory Effect of Body Acceleration given Synchronously with the Heartbeat (BASH), Bibl Cardiol. 26, 180-187
  4. Berger, S. A. and L. D. Jou, 2000, Flows in Stenotic Vessels, Annu Rev Fluid Mech. 32, 347-382 https://doi.org/10.1146/annurev.fluid.32.1.347
  5. Bradley, J. G and K. A. Davis, 2003, Orthostatic Hypotension, Am Fam Physician. 68, 2393-2398
  6. Burton, R. R., S. D. Leverett and S. D. Michaelson, 1974, Man at High Sustainεd +G Accelεration: A Review, Aerosp Med. 45, 1115-1136
  7. Caro, C. G, J. M. Fitz-Gerald and R. C. Schroter, 1971 , Atheroma and arterial wall shear: observation, correlation and proposal of a heart dependent mass transfer mechanism for atherogenesis, Proc. R. Soc. Lond., B, Biol. Sci. 177, 109-159 https://doi.org/10.1098/rspb.1971.0019
  8. CEN Report 12349, 2006, Guide to good practice on Whole-Body Vibration. WBV Good practice Guide v6.7g, EUROPEAN COMMITTEE FOR STANDARDIZATION
  9. Chakravarty, S. and P. K. Mandal, 1996, A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration, Math Comput Model. 24, 43-58
  10. Chaturani, P. and V. Palanisamy, 1990, Casson fluid model for pulsatile flow of blood flow under periodic body acceleration, Biorheology. 27, 619-630
  11. Chaturani, P. and V. Palanisamy, 1991, PuIsatile flow of blood with periodic body acceleration, Int. J. Eng. Sci. 29, 113-121 https://doi.org/10.1016/0020-7225(91)90081-D
  12. Chaturani, P., A. S. A. Isaac and Wassf, 1995, Blood flow with body acceleration forces, Int. J. Eng. Sci. 33, 1807-1820 https://doi.org/10.1016/0020-7225(95)00027-U
  13. Cho, Y.I., L. H. Back and D. W. Crawford, 1985, Experimental investigation of branch flow ratio, angel and Reynolds number effects on the pressure and flow fields in arterial branch models, J Biomech Eng. 107, 257-267 https://doi.org/10.1115/1.3138551
  14. EI-Shahed, M., 2003, Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl Math Comput. 138, 479-488 https://doi.org/10.1016/S0096-3003(02)00164-9
  15. Fry, D. L., 1968, acute vascular endothelium changes associated with increased blood velocity gradients, Circ. Res. 22, 165-197
  16. Fry, D. L., 1969, certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog, Circ. Res. 24, 93-108 https://doi.org/10.1161/01.RES.24.1.93
  17. He, X. and D. N. Ku, 1996, Pulsatile flow in the human left coronary artery bifurcation: average conditions, J Biomech Eng. 118, 74-82 https://doi.org/10.1115/1.2795948
  18. Hiatt, E. P., J. P. Mecchan and Galambos, 1961, Reports on human acceleration, nasnrc washington dc, publication 901
  19. Hooks, L. E., R. M. Nerem and T. J. Benson, 1972, A momentum integral solution for pulsatile flow in a rigid tube with and without longitudinal vibration, Int J Eng Sci. 10, 989-1007 https://doi.org/10.1016/0020-7225(72)90021-3
  20. ISO, 1997, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements, International Organization for Standardization, 2631-1
  21. Ku, D. N., D. P. Giddens, C. K. Zarins and S. Glagov, 1985, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis. 5, 293-302 https://doi.org/10.1161/01.ATV.5.3.293
  22. Mandal, P. K., S. Chakravarthy, A. Mandal and N, Amin, 2007, Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery, Appl Math Comput. 189, 766-779 https://doi.org/10.1016/j.amc.2006.11.139
  23. Mirsa, J. C. and B. K. Sahu, 1988, Flow through blood vessels under the action of a periodic acceleration field : A mathematical analysis, Comput Math Appl. 16, 993-1016 https://doi.org/10.1016/0898-1221(88)90256-8
  24. Nagarani, P. and G. Sarojamma, 2008, Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery, Korea-Aust. Rheol. J. 20, 189-196
  25. Smedby, O., 1997, Do plaques grow upstream or downstream?: an angiographic study in the femoral artery, Arterioscler Thromb Vasc Biol. 17, 912-918
  26. Sud, V. K. and G. S. Sekhon, 1985, Arterial flow under periodic body acceleration, Bull. Math. Biol. 47, 35-52
  27. Sud, V. K. and G. S. Sekhon, 1986, Analysis of blood through a model of the human arterial system under periodic body acceleration, J Biomech. 19, 929-941 https://doi.org/10.1016/0021-9290(86)90188-0
  28. Tang, D., C. Yang, J. Zheng, P. K. Woodard, G. A. Sicard, J. E. Saffitz and C. Yuan, 2004, 3D MRI-Based multicomponent fsi models for atherosclerotic plaques, Ann Biomed Eng. 32, 947-960 https://doi.org/10.1023/B:ABME.0000032457.10191.e0
  29. Tang, D., C. Yang, S. Kobayashi, D. N. Ku, 2004, Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models, J Biomech Eng. 126, 363-370 https://doi.org/10.1115/1.1762898
  30. Young, D. F., 1968, Effect of a time dependant stenosis on flow through a tube, J Eng Ind Trans ASME. 90, 148-154
  31. Zerwic, J. J., 1988, Symptoms of acute myocardial infarction: Expectations of a community sample, Heart Lung. 27, 75-8