• 제목/요약/키워드: non-Archimedian field

검색결과 2건 처리시간 0.017초

ON A GENERALIZED DIFFERENCE SEQUENCE SPACES OVER NON-ARCHIMEDIAN FIELDS AND RELATED MATRIX TRANSFORMATIONS

  • BATAINEH AHMAD H. A.;AL-ZA'AREER HAMZA B.
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.723-729
    • /
    • 2005
  • Let F be a non-trivial non-Archimedian field. The sequence spaces $\Gamma\;(F)\;and\;{\Gamma}^{\ast}(F)$ were defined and studied by Soma-sundaram[4], where these spaces denote the spaces of entire and analytic sequences defined over F, respectively. In 1997, these spaces were generalized by Mursaleen and Qamaruddin[1] by considering an arbitrary sequence $U\;=\;(U_k),\;U_k\;{\neq}\;0 \;(\;k\;=\;1,2,3,{\cdots})$. They characterized some classes of infinite matrices considering these new classes of sequences. In this paper, we further generalize the above mentioned spaces and define the spaces $\Gamma(u,\;F,\;{\Delta}),\;{\Gamma}^{\ast}(u,\;F,\;{\Delta}),\;l_p(u,\;F,\;{\Delta})$), and $b_v(u,\;F,\;{\Delta}$). We also study some matrix transformations on these new spaces.

p-진 q-적분의 변천사에 대한 고찰 (On the historical investigation of p-adic invariant q-integral on $\mathbb{Z}_p$)

  • 장이채;서종진;김태균
    • 한국수학사학회지
    • /
    • 제22권4호
    • /
    • pp.145-160
    • /
    • 2009
  • 20세기말 p-진 공간에서 p-진 q-적분의 개념이 김태균에 의해서 처음 도입 되었다([11]). 이러한 적분은 복소수 공간에서 잭슨의 q-적분을 p-진 공간으로 확장 시킨 것이며 또한 울트라 비 아르키메디언 적분의 존재성에 대한 질문의 답으로 볼 수 있다. 본 논문에서는 이러한 p-진 q-적분의 수학사적 배경을 살펴보고, 현재 어떠한 방향으로 연구가 진행되고 있는지를 고찰한다.

  • PDF