Journal of the Korean Society for Precision Engineering
/
v.12
no.12
/
pp.130-138
/
1995
Machined graphite/epoxy surfaces were studied by using SEM (Scanning Electron Microscopy), surface profilometry and its analysis to determine suitable surface describing parameters for machined unidirectional and multidirectional laminate composite. The surface roughness and profile are found to be highly depdndent on the fiber layup direction and the measurement direction. It was possible to machine 90 .deg. and -45 .deg. plies due to the adjacent plies, which were holding those plies. It was found that the microgeometrical variations in terms of roughness parameters $R_{a}$ without $D_{y}$(Maximum Damage Depth) region and $D_{y}$are better descriptors of the machined laminate composite surface than commonly used roughness parameters $R_{a}$and $R_{max}$ The characteristics of surface profiles in laminate composite are well represented in CPD (Cumulative Probability Distribution) plot and PPD (Percentage Probability Density) plot. Edge-trimmed multidirectional laminate surfaces are Gaussian and random for profiles measured along the tool movement direction, they are periodic and non-Gaussian in the direction perpendicular to the tool movement.t.ent.t.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.5
/
pp.518-523
/
2017
This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.
Methods of contrast enhancement have problem such as side effect of over-enhancement with non-gaussian histogram distribution, tradeoff enhancement efficiency against brightness preserving. In order to enhance contrast at various histogram distribution, segmentation to region with gaussian distribution and then enhance contrast each region. First, we segment an image into several regions using GMM(Gaussian Mixture Model)fitting by that k-mean clustering and EM(Expectation-Maximization) in $L^*a^*b^*$ color space. As a result region segmentation, we get the region map and probability map. Then we apply local contrast enhancement algorithm that mean shift to minimum overlapping of each region and preserve brightness histogram equalization. Experiment result show that proposed region based contrast enhancement method compare to the conventional method as AMBE(AbsoluteMean Brightness Error) and AE(Average Entropy), brightness is maintained and represented detail information.
Proceedings of the Korean Vacuum Society Conference
/
1999.07a
/
pp.37-37
/
1999
KSTAR(Korea Superconducting Tokamak Advanced Research) 핵융합 토카막 실험 장치의 플라즈마 가열을 위한 수소 중성입자빔 수송라인 내에 설치되는 collimator에 가해지는 열속 및 플라즈마에 전달되는 빔의 통과율을 해석하였다. 43cm$\times$12cm 크기의 이온원으로부터 방출되는 이온빔의 공간적 분산은 기본적으로는 Gaussian 분산(수직바향으로 1.2$^{\circ}$, 수평방향으로 0.5$^{\circ}$)의 형태를 가지지만 이온 가속 전장의 공간적 불균일로 인해 Gaussian 분산에서 다소 벗어나는 형태를 띠게 되는데, 이의 영향을 고려할 수 있는 수학적 모델을 정립하였다. 해석에 고려된 요소들은 다음과 같다. 이온원을 수많은 점원의 집합으로 가정하여 각각의 점원으로부터 주어진 공간적 분산을 가지는 이온들이 방출되는 것으로 가정하였으며, 방출된 이온은 중성화 과정을 거쳐 40%의 이온만이 중성입자화되며, 중성화되지 않은 60%의 이온들은 bending magnet에서 ion dump로 유도되어 사라지며, 나머지 중성입자들은 직진 운동을 하게 된다. 빔 진행 도중 빔 중앙에서 크게 벗어나는 일부 중성입자들은 여러 겹으로 존재하는 빔 collimator에 의해 단계적으로 제거되며, 일부 중성입자들은 잔류 수소기체에 의한 재이온화 과정을 거치기도 한다. 여기서는 정립된 수학적 모델을 이용하여 이들 collimator에서 제거되는 양 및 재이온화 손실들을 고려하여 최종적으로 플라즈마에 입사되는 중성입자 빔을 계산하였다. 한편, 빔 수송라인 설치시에 발생할 수 있는 설치 오차를 이온원 설치시의 오차와 빔 collimator 설치상의 오차로 구분하여 이들의 의한 영향도 계산하였다. Gaussian 분산을 가정하였을 경우, 이온원에 가장 근접하여 설치되는 collimator에 가해지는 수직성분의 열속은 9.7kW/cm2로 계산되었다. 이 열속을 제어 가능한 수준으로 낮추기 위해서 collimator는 빔 라인과 거의 나란하게 설치될 것이다. 빔의 통과율은 약 33%로서 하나의 이온원에서 방출된 7.8MW 중 2.5 MW만이 플라즈마에 전달되는 것을 알 수 있었다. Non-Gaussian 분산의 경우, 최대 열속은 9.1kW/cm2로 다소 낮아졌으나, 빔통과율은 28%정도로 더욱 낮아졌다. 설치상의 오차에 의한 영향을 살펴보면, 이온원이 1$^{\circ}$ 정도 기울어지게 설치된다면 collimaor에 가해지는 최대 열속 및 빔통과율은 약 15kW/cm2, 16.6% 정도로 나타나 매우 심각한 결과를 초래함을 알 수 있었다. 이에 비해 collimator 설치상의 오차의 영향은 이보다 훨씬 작아 5mm 오차가 발생했을 경우에도 최대 열속은 12kW/cm2까지 증가했으나, 빔 통과율의 변화는 거의 없었다.
Most of Automatic Accident Detection Algorithm has a problem of detecting an accident as traffic congestion. Actually, center's managers deal with accidents depend on watching CCTV or accident report by drivers even though they run the Automatic Accident Detection system. It is because of the system's detecting errors such as detecting non-accidents as accidents, and it makes decreasing in the system's overall reliability. It means that Automatic Accident Detection Algorithm should not only have high detection probability but also have low false alarm probability, and it has to detect accurate accident spot. The study tries to verify and evaluate the effectiveness of using Gaussian Mixture Model and individual vehicle tracking to adapt Accident Detection Algorithm to Center Management System by measuring accident detection probability and false alarm probability's frequency in the real accident.
We propose an adaptive Recursive Least Rank(RLR) L-filter which uses an L-estimator in order statistics and is based on rank estimate in robust statistics. The proposed RLR L-filter is a non-linear adaptive filter using non-linear adaptive algorithm and adapts itself to optimal filter in the sense of least dispersion measure of errors with non-homogeneous step size. Therefore the filter may be suitable for applications when the transmission channel is nonlinear channels such as Gaussian noise or impulsive noise, or when the signal is non-stationary such as image signal.
In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.
Journal of Korea Society of Digital Industry and Information Management
/
v.16
no.3
/
pp.49-58
/
2020
Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.
Owing to the increase of FTA, food trade, and versatile preferences of consumers, food import has increased at tremendous rate every year. While the inspection check of imported food accounts for about 20% of the total food import, the budget and manpower necessary for the government's import inspection control is reaching its limit. The sudden import food accidents can cause enormous social and economic losses. Therefore, predictive system to forecast the compliance of food import with its preemptive measures will greatly improve the efficiency and effectiveness of import safety control management. There has already been a huge data accumulated from the past. The processed foods account for 75% of the total food import in the import food sector. The analysis of big data and the application of analytical techniques are also used to extract meaningful information from a large amount of data. Unfortunately, not many studies have been done regarding analyzing the import food and its implication with understanding the big data of food import. In this context, this study applied a variety of classification algorithms in the field of machine learning and suggested a data preprocessing method through the generation of new derivative variables to improve the accuracy of the model. In addition, the present study compared the performance of the predictive classification algorithms with the general base classifier. The Gaussian Naïve Bayes prediction model among various base classifiers showed the best performance to detect and predict the nonconformity of imported food. In the future, it is expected that the application of the abnormality detection model using the Gaussian Naïve Bayes. The predictive model will reduce the burdens of the inspection of import food and increase the non-conformity rate, which will have a great effect on the efficiency of the food import safety control and the speed of import customs clearance.
Lee, Chung Keun;Kim, Bong Soo;Kwon, Ja Young;Choi, Young Deuk;Song, Kwang Soup;Nam, Ki Chang
Journal of the Institute of Electronics and Information Engineers
/
v.49
no.10
/
pp.202-208
/
2012
Fetal heart rate monitoring is important information to assess fetal well-being. Non-invasive fetal ECG (electrocardiography) can be derived from maternal abdominal signal. And various promising signal processing methods have been introduced to extract fetal ECG from mother's composite abdominal signal. However, non-invasive fetal ECG monitoring still has not been widely used in clinical practice due to insufficient reliable measurement and difficulty of signal processing. In application of signal processing method to extract fetal ECG, it might be lower signal to noise ratio due to time varying white Gaussian noise. In this paper, time varying Kalman smoother is proposed to remove white noise in fetal ECG and its feasibility is confirmed. Wiener process was set as Kalman system model and covariance matrix was modified according to white Gaussian noise level. Modified error covariance matrix changed Kalman gain and degree of smoothness. Optimal covariance matrix according to various amplitude in Gaussian white noise was extracted by 5 channel fetal ECG model, and feasibility of proposed method could be confirmed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.