• Title/Summary/Keyword: nominal wake fraction

Search Result 3, Processing Time 0.025 seconds

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.

An experimental assessment of resistance reduction and wake modification of a KVLCC model by using outer-layer vertical blades

  • An, Nam Hyun;Ryu, Sang Hoon;Chun, Ho Hwan;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.151-161
    • /
    • 2014
  • In this study, an experimental investigation has been made of the applicability of outer-layer vertical blades to real ship model. After first devised by Hutchins and Choi (2003), the outer-layer vertical blades demonstrated its effectiveness in reducing total drag of flat plate (Park et al., 2011) with maximum drag reduction of 9.6%. With a view to assessing the effect in the flow around a ship, the arrays of outer-layer vertical blades have been installed onto the side bottom and flat bottom of a 300k KVLCC model. A series of towing tank test has been carried out to investigate resistance (CTM) reduction efficiency and improvement of stern wake distribution with varying geometric parameters of the blades array. The installation of vertical blades led to the CTM reduction of 2.15~2.76% near the service speed. The nominal wake fraction was affected marginally by the blades array and the axial velocity distribution tended to be more uniform by the blades array.

A Study on the Resistance Performance and Flow Characteristic of Ship with a Fin Attached on Stern Hull (선박 선미부 핀 부착에 의한 저항성능 및 유동 특성에 관한 연구)

  • Lee, Jonghyeon;Kim, Inseob;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1106-1115
    • /
    • 2021
  • In this study, a fin that controls ship stern flow was attached on stern hull of a 80k bulk carrier to improve resistance performance. The rectangular cross-sectional fin was attached at several locations on the hull, and angle to streamline was changed with constant length, breadth, and thickness. The resistance performance and wake on propeller plane of the hull with and without the fin were analyzed using model-scale computational fluid dynamics simulation. The analysis results were extrapolated to full-scale to compare the performance and wake of the full-scale ship. First, the fin changed path of bilge vortex that flowed into the propeller along the stern hull without the fin to transom stern. This change increased pressure of the stern hull and upper region of the propeller, so pressure resistance and total resistance of the hull were reduced - the nearer the fin location to after perpendicular (AP) and base line of the hull, the larger the reduction of the resistances. Second, nominal wake fraction of the hull with the fin was lower than that without the fin. This dif erence was in proportion to the angle of the fin, but the total resistance reduction was in proportion until a certain angle at which the reduction was maximum. The largest total resistance reduction was approximately 2.1% at 12.5% of length between perpendiculars from the AP, 10% of draft from the base line, and 14° with respect to the streamline.