• Title/Summary/Keyword: noise types

Search Result 1,132, Processing Time 0.025 seconds

Tomosynthesis Feasibility Study for Visualization of Interiors of Wood Columns Surrounded with Walls

  • LEE, Jun Jae;KIM, Chul-Ki
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.246-255
    • /
    • 2022
  • The need for non-destructive testing and evaluation of Korean traditional wooden buildings is increasing because of their widespread deterioration. Among all types of deterioration, termite damage in wooden columns is the most difficult to detect with the naked eye because it starts inside the wood, and the initial deterioration is small. X-ray computed tomography (CT) is the best technology to investigate the inner state of wood that has less damage, but applying it to wooden columns between walls is challenging. Therefore, the feasibility of tomosynthesis, which is a method to reconstruct a coronal section of a subject with a few X-ray projections from a limited angle of rotation, was studied as an alternative to CT. Pine (P. densiflora) with three artificial holes was prepared as a specimen to evaluate the quality of reconstructed tomosynthesis images according to the different number of projections. The quality of the tomosynthesis images in the in-focus plane was evaluated using the contrast-to-noise ratios, while a vertical resolution between the images was assessed by determining the artificial spread function. The quality of the tomosynthesis image in the in-focus plane increased as the number of projections increased and then remained constant as the number of projections reached 21 or over. In the case of vertical resolution, there was no significant difference when 21 projections or more were used to reconstruct the images. A distinct difference between coronal section images was found when the distance was more than 10 mm from one plane to another plane.

Estimation of the Depth of Embedded Sheet Piles Using Two Types of Geophysical Loggings (다종 물리검층을 통한 시트파일 근입 심도 추정 연구)

  • Hwang, Sungpil;Kim, Wooseok;Jeoung, Jaehyeung;Kim, Kiju;Park, Byungsuk;Lee, Chulhee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • This investigation used two different geophysical logging techniques to confirm the depth to which a sheet pile was driven. Depth was estimated through analysis of the movement speed and three-component movement directions of a P-wave transmitted through the ground. It was also estimated by pole-pole and pole-dipole methods using electrical data logging to measure apparent resistivity. The two methods' respective results were 9.0 m (±1.5 m) and 7.5 m. As field ground conditions will include mixtures of various materials, electrical data logging is judged to be suitable for assessing depth due to its low signal-to-noise ratio.

Application of a Hydraulic Rock Splitting System to Bench-Cut Field Experiments (수압암반절개시스템을 이용한 벤치컷 현장 적용 사례 연구)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.725-733
    • /
    • 2022
  • This study applied a hydraulic rock splitting system equipped with a hybrid packer to the bench-cut method. The hybrid packer system is an improvement of the packer developed in previous studies; it is designed efficiently to reduce vibration and noise during rock excavation by combining the two functions of inducing hydraulic fractures using injection pressure and then expanding and extending them using a rubber packer. Field experiments assessed the efficiency of rock excavation with respect to the injection conditions; the adjusted experimental conditions included the distance from the free surface and the test holes drilled at the top of the slope and the injection settings. Using a separation of 5 m left some unexcavated parts, but using a separation of 1 m left no unexcavated parts. The hydraulic fractures generated by the injection pressure developed generally parallel to the free surface and expanded and extended as the rubber packer expanded, thus facilitating bench-cut excavation. For hydraulic rock splitting to be broadly applicable to bench-cut rock excavation, it is important to accumulate results from many field experiments conducted under varying experimental conditions for various types of rockmass.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

The Effects of Hedonic Versus Utilitarian Attributes on the Consumer Acceptance of Intelligent Products (지능형제품의 쾌락적 속성과 실용적 속성이 소비자 수용도에 미치는 영향)

  • Kwak, Sonya S.
    • Design Convergence Study
    • /
    • v.15 no.2
    • /
    • pp.333-345
    • /
    • 2016
  • Recently, an intelligent product in which information and robotic technologies are applied to an existing common product, called a mother product has been developed. In order to develop intelligent products which could be accepted by users, various intelligent product design methods have been introduced considering various interaction aspects or intelligent parts to be made. However, as an intelligent product is originated in a mother product, intelligent product design methods based on product attributes need to be explored. In this study, the impact of intelligent product types by product attributes on users' acceptance was investigated by comparing hedonic intelligent products and utilitarian intelligent products. An experiment was executed with child slippers as a case. As a result, participants evaluated utilitarian intelligent products more positively than hedonic intelligent products. They showed higher purchase intention and willingness to pay toward utilitarian intelligent products than hedonic intelligent products. In the case of child slippers, even though the hedonic attributes could be expected as they are child products, utilitarian attributes were perceived as much more important than hedonic attributes as the child slippers are related to the floor noise which is a severe social problem.

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.

Comparative Analysis of Satisfaction according to Opened-Fencing in Campus Afforestation Project Types - Focused on University in Seoul - (대학교 담장개방 녹화사업 유형에 따른 이용 만족도 비교 분석 - 서울 소재 대학 캠퍼스를 중심으로 -)

  • Lee, Se-Mi;Kim, Dong-Chan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.6
    • /
    • pp.57-66
    • /
    • 2011
  • This study researched those universities for which fence opening and greening projects are being conducted by Seoul city. The forms of opened fences at 24 universities which have accomplished this project were classified into several types for each type of university, representative cases with many diverse facilities and active users were selected and investigated. The study was carried out using methods of field observations, literature review, and surveys. To maintain the confidentiality of the collected questionnaire analysis, the analysis of each type's usage frequency, overall satisfaction and a regression analysis with space environment and facilities, a one-way ANOVA for was used to validate the difference between types regarding satisfaction with the project. The results of usage type analysis were found to agree with the 3 analysis criteria-- installation location, user characteristics, and usage purpose--which were the legislative concepts. In overall satisfaction with facilities, it appeared that except for Seoul Women's College of Nursing with its rural district neighborhood type park, users were satisfied: with the small urban neighborhood park of Methodist Theological College, Konkuk University's small urban square park, and Sejong University's green space small city park. In general, users appeared to not have satisfaction with such features as fountains / hydroponic facilities, fitness facilities, and square facilities, which should be taken into consideration when pursuing further opening and greening projects. Regarding full satisfaction with the space environment, it was found that users were not satisfied with Seoul Women's College of Nursing's rural district neighborhood-style park, whereas they were satisfied with Methodist Theological College's small urban neighborhood park, Konkuk University's small urban square-style park, and Sejong University's green space small city park. In addition, it was shown that facilities use, convenience and privacy of the four parks were largely unsatisfactory for users, and that the small city parks located at roadsides were unsatisfactory regarding noise level, both of which should be most highly considered when conducting similar projects in the future.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support fer multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To date, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques' results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

Development of inside-out probes for both Nuclear Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy (핵자기공명 영상법과 핵자기공명 분광법을 위한 뒤집음-탐침의 개발에 대한 연구)

  • Lee, Dong-Hun;Go, Rak-Gil;Jeong, Eun-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.309-316
    • /
    • 1995
  • RF (radio-frequency) probes of Nuclear Magnetic Resonance are one of the important factors and should be designed and built properly depending upon the geometry of the samples and the information. In general there are two kinds of rf probes : one encircles the sample while the other is placed on the surface of the sample. However, in case that the samples on human internal organs have a tube shape, the two kinds of rf probes, as specified above, are usually unsuitable for the internal imaging due to the degradation of signal-to-noise ratios (SNR's). In this case a probe should be positioned as close to the area as possible by putting the probe in the tubelike sample to improve filling factor In the present study inside-out probes have been constructed in the three different shapes such as an anti-solenoidal, a saddle and a dual surface types. RF-field distributions have also been calculated depending upon the geometrical changes of anti-solenoid probes. Moreover, the performance of the inside-out probes has been checked by measuring SNR's of the images acquired. The inside-out probes constructed in this study produced better SWR's and rf-field uniformity in the area close to the probes in comparing with any other commercial probes. There is a high feasibility that the constructed probes in the present study are applicable to the diagnosis of human bodies.

  • PDF