• 제목/요약/키워드: noise subtraction

검색결과 155건 처리시간 0.021초

Wiener Filtering을 이용한 잡음환경에서의 음성인식 (Speech Recognition in Noisy Environments using Wiener Filtering)

  • 김진영;엄기완;최홍섭
    • 음성과학
    • /
    • 제1권
    • /
    • pp.277-283
    • /
    • 1997
  • In this paper, we present a robust recognition algorithm based on the Wiener filtering method as a research tool to develop the Korean Speech recognition system. We especially used Wiener filtering method in cepstrum-domain, because the method in frequency-domain is computationally expensive and complex. Evaluation of the effectiveness of this method has been conducted in speaker-independent isolated Korean digit recognition tasks using discrete HMM speech recognition systems. In these tasks, we used 12th order weighted cepstral as a feature vector and added computer simulated white gaussian noise of different levels to clean speech signals for recognition experiments under noisy conditions. Experimental results show that the presented algorithm can provide an improvement in recognition of as much as from $5\%\;to\;\20\%$ in comparison to spectral subtraction method.

  • PDF

DEVELOPMENT STATUS OF THE DOTIFS DATA SIMULATOR AND THE REDUCTION PACKAGE

  • CHUNG, HAEUN;RAMAPRAKASH, A.N.;PARK, CHANGBOM
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.675-677
    • /
    • 2015
  • A data simulator and reduction package for the Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) has been developed. Since data reduction for the Integral Field Spectrograph (IFS) requires complicated procedures due to the complex nature of the integral spectrograph, common reduction procedures are usually not directly applicable for such an instrument. Therefore, the development of an optimized package for the DOTIFS is required. The data simulator observes artificial object and simulates CCD images for the instrument considering various effects; e.g. atmosphere, sky background, transmission, spectrograph optics aberration, and detector noise. The data reduction package has been developed based on the outcomes from the DOTIFS data simulator. The reduction package includes the entire processes for the reduction; pre-processing, flat-fielding, and sky subtraction. It generates 3D data cubes as a final product, which users can use for science directly.

인코히런트 광원을 이용한 영상의 동기 가감 (Simultaneous Addition and Subtraction of Optical Images by Using the Extended Incoherent Source)

  • 박형래;전석희;박한규
    • 대한전자공학회논문지
    • /
    • 제23권6호
    • /
    • pp.961-967
    • /
    • 1986
  • A technique of optical image synthesis with an extended incoherent source is presented and compared with the coherent method. A holographic diffraction grating is fabricated by using Michelson interferometer, and by equalizing the 8th-order to the 2nd-order diffraction efficiency, complex amplitude addition and subtracdtion of optical images are simultaneously realized. The experiment shows that the quality of synthesized optical images in the incoherent method is improved in comparison with that of the coherent method by suppressing the coherent artifact noise.

  • PDF

음질향상을 위해 비선형 함수와 사전 음성부재확률을 이용한 최소통계법의 잡음전력편의 보상방법 (Noise-Biased Compensation of Minimum Statistics Method using a Nonlinear Function and A Priori Speech Absence Probability for Speech Enhancement)

  • 이수정;이강성;김순협
    • 한국음향학회지
    • /
    • 제28권1호
    • /
    • pp.77-83
    • /
    • 2009
  • 본 논문에서는 비정상 잡음환경에서 음질향상을 위한 비선형 함수와 사전 음성부재 확률을 이용한 최소 통계치(MS) 방법의 잡음전력편의 보상 방법을 제안한다. 비정상 잡음환경에서 잡음전력추정을 위해 최소 통계치 방법이 잘 알려져 있지만, 예측된 잡음전력 추정 값은 실제 잡음 전력 값보다 하향 편의 되는 특성을 나타낸다. 제안한 방법은 비선형 함수를 적용한 적응보상파라미터와 사전 음성부재 확률 값을 혼용하는 잡음전력편의 보상방법이다. 특히, 적응보상 파라미터는 사후 SNR을 이용한 비 선형함수를 적용하여 잡음수준의 증감에 따라 파라미터 값을 조절한다. 또한, 사전 음성부재확률 값이 1로 수렴할 경우, 적응보상파라미터 값은 각 주파수별로 최대치까지 증가하지만, 확률 값이 0에 가까워지면 반대의 특성을 나타낸다. 제안한 알고리즘의 잡음전력추정 및 음질향상의 성능평가를 위해 다양한 종류의 잡음과 비정상적인 극심한 잡음환경을 설정하여 실험하고, 음질향상을 위해 주파수 차감법과 결합하였다. 알고리즘의 성능은 다양한 잡음환경의 신호 대 잡음비 (SNR)와 Itakura-Saito 음질왜곡 평가법을 이용하여 기존 최소 통계치 (MS)방법에 비해 우수한 결과를 나타냈다.

켑스트럼으로부터 변환된 로그 스펙트럼을 이용한 포먼트 평활화 켑스트럴 평균 차감법 (Formant-broadened CMS Using the Log-spectrum Transformed from the Cepstrum)

  • 김유진;정혜경;정재호
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.361-373
    • /
    • 2002
  • 본 논문에서는 음성 인식과 화자 인식에서 채널 변이 정규화를 위해 널리 사용되는 전통적인 켑스트럴 평균차감법 (CMS: Cepstral Mean Subtraction)의 성능을 향상시키기 위한 정규화 방법을 제안한다. 기존의 켑스트럴 평균 차감법은 장구간 켑스트럼의 평균으로 채널 성분을 추정하므로 유성음의 포먼트에 의해 채널 성분이 편향되는 단점을 가진다. 제안된 포먼트 평활화 켑스트럴 평균 차감법 (FBCMS; Formant-broadened CMS)은 켑스트럼으로부터 변환된 로그 스펙트럼에서 포먼트 위치를 쉽게 찾을 수 있고, 포먼트는 전극점 모델로 표현되는 성도 전달 함수의 우세 극점에 대응된다는 사실에 근거한다. 따라서 제안된 방법은 켑스트럼으로부터 음성의 포먼트를 구하고, 이로부터 포먼트의 대역폭을 확장한 켑스트럼을 구한 후 평균함으로써 채널 켑스트럼 성분으로부터 우세 극점들의 영향을 제거한다. 전극점 모델의 우세 극점을 얻기 위해 다항식 인수분해 과정을 거치지 않으므로 연산량을 줄일 수 있으며 포먼트에 해당하는 우세 극점만으로 선택적으로 처리할 수 있다. 본 연구에서는 4가지의 모의 채널을 이용하여 전통적인 켑스트럴 평균 차감법, 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CMS) 그리고 제안된 방법의 비교실험을 수행하였다. 실제 채널 켑스트럼과 추정된 채널 켑스트럼과의 거리를 측정하는 실험에서 음성에 의한 편향을 완화시켜 실제 채널에 보다 가까운 평균 켑스트럼을 얻을 수 있음을 확인하였다. 또한 문장독립 화자 식별에서 제안된 방법은 전통적인 켑스트럴 평균 차감법보다 우세하고 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CU)과는 비슷한 결과를 보였다. 결과적으로 제안된 방법은 전통적인 켑스트럴 평균 차감법에 기반하여 효과적인 채널 정규화가 가능하다는 것을 보였다.

음성 향상에서 강인한 새로운 선행 SNR 추정 기법에 관한 연구 (A Novel Approach to a Robust A Priori SNR Estimator in Speech Enhancement)

  • 박윤식;장준혁
    • 한국음향학회지
    • /
    • 제25권8호
    • /
    • pp.383-388
    • /
    • 2006
  • 본 논문에서는 잡음 환경에서 단일 마이크로폰의 음성 향상에 대한 새로운 기법을 제시했다. 일반적으로 널리 알려진 스펙트럼 차감법에 근거한 음성 향상 기술은 신호 대 잡음비에 따른 스펙트럼 이득으로 표현된다. 대표적인 Ephraim과 Malah의 decision-directed (DD) 추정치는 잡음 구간에서 효율적으로 뮤지컬 잡음을 제거하지만 음성 구간에서는 이전 프레임의 음성 스펙트럼 성분에 더 큰 비중을 두기 때문에 a priori SNR의 프레임 지연이 발생한다. 따라서 DD에 의해 추정된 a priori SNR이 적용된 잡음 제거 이득은 현재 프레임보다 이전 프레임에 영향을 받으므로 음성 전이 구간에서 잡음 제거 성능을 저하시킨다. 본 논문은 DD의 가중치 파라미터에 Sigmoid Type의 함수를 적용하여 계산적으로는 간단하지만 효과적인 음성 향상 알고리즘을 제안한다. 제안된 접근 방식은 DD의 주요 파라미터인 a priori SNR 지연의 문제점을 해결하면서 뮤지컬 잡음 제거에 우수한 DD의 이점은 유지한다. 제안된 알고리즘의 성능은 다양한 잡음 환경에서 ITU-T P.862 Perceptual Evaluation of Speech Quality (PESQ) 와 Mean Opinion Score (MOS). 그리고 음성 스펙트로그램 (Spectrogram)에 의해 평가했고 기존의 DD의 고정된 가중치 파라미터를 사용했을 때 보다 향상된 결과를 나타내었다.

Environmental IoT-Enabled Multimodal Mashup Service for Smart Forest Fires Monitoring

  • Elmisery, Ahmed M.;Sertovic, Mirela
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.163-170
    • /
    • 2017
  • Internet of things (IoT) is a new paradigm for collecting, processing and analyzing various contents in order to detect anomalies and to monitor particular patterns in a specific environment. The collected data can be used to discover new patterns and to offer new insights. IoT-enabled data mashup is a new technology to combine various types of information from multiple sources into a single web service. Mashup services create a new horizon for different applications. Environmental monitoring is a serious tool for the state and private organizations, which are located in regions with environmental hazards and seek to gain insights to detect hazards and locate them clearly. These organizations may utilize IoT - enabled data mashup service to merge different types of datasets from different IoT sensor networks in order to leverage their data analytics performance and the accuracy of the predictions. This paper presents an IoT - enabled data mashup service, where the multimedia data is collected from the various IoT platforms, then fed into an environmental cognition service which executes different image processing techniques such as noise removal, segmentation, and feature extraction, in order to detect interesting patterns in hazardous areas. The noise present in the captured images is eliminated with the help of a noise removal and background subtraction processes. Markov based approach was utilized to segment the possible regions of interest. The viable features within each region were extracted using a multiresolution wavelet transform, then fed into a discriminative classifier to extract various patterns. Experimental results have shown an accurate detection performance and adequate processing time for the proposed approach. We also provide a data mashup scenario for an IoT-enabled environmental hazard detection service and experimentation results.

Optimization and Performance Evaluation for the Science Detector Systems of IGRINS

  • Jeong, Ueejeong;Chun, Moo-Young;Oh, Jae-Sok;Park, Chan;Yu, Young Sam;Oh, Heeyoung;Yuk, In-Soo;Kim, Kang-Min;Ko, Kyeong Yeon;Pavel, Michael;Jaffe, Daniel T.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.91.1-91.1
    • /
    • 2014
  • IGRINS (the Immersion GRating INfrared Spectrometer) is a high resolution wide-band infrared spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras, both of which use Teledyne's $2.5{\mu}m$ cutoff $2k{\times}2k$ HgCdTe HAWAII-2RG CMOS science grade detectors. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control these detectors. We performed lab experiments and test observations to optimize and evaluate the detector systems of science cameras. In this presentation, we describe a process to optimize bias voltages and way to reduce pattern noise with reference pixel subtraction schemes. We also present measurements of the following properties under optimized settings of bias voltages at cryogenic temperature (70K): read noise, Fowler noise, dark current, and reference-level stability, full well depth, linearity and conversion gain.

  • PDF

롬바드 효과의 보정을 위한 스펙트럼 크기의 정규화와 켑스트럼 변환 (Normalization of Spectral Magnitude and Cepstral Transformation for Compensation of Lombard Effect)

  • 지상문;오영환
    • 한국음향학회지
    • /
    • 제15권4호
    • /
    • pp.83-92
    • /
    • 1996
  • 본 연구에서는 음성인식기의 성능이 잡음환경하에서 급격히 저하되는 것을 완화하기 위해, 성능저하의 원인인 롬바드효과의 보정과 잡음의 제거방법을 제안하였다. 롬바드 효과는 조용한 환경에서 발성된 음성에 비해, 스펙트럼 포락과 발성음의 세기를 변이 시키는 것으로 모델링하였고, 변이의 제거를 위해 스펙트럼 크기의 정규화와 켑스트럼 변환을 사용하였다. 주변 잡음의 첨가에 의한 음성신호의 왜곡은 스펙트럼 차감법을 사용하여 완화하였고, 음성의 동적인 특성을 강조하기 위해 대역통과 필터링을 하였다. 잡음환경에서 발성된 롬바드 음성의 분석 및 잡음처리 기술의 개발과 평가를 위해, 음성인식 기술의 적용이 예상되는 자동차, 전시장, 시내 공중전화 부스, 거리, 전산실 잡음을 이용하여 롬바드 음성을 수집하여 실험하였다. 제안한 방법을 여러 가지 잡음환경하에서 음성인식에 적용한 결과, 효과적인 잡음처리 방법임을 확인할 수 있었다.

  • PDF

전화선 채널이 화자확인 시스템의 성능에 미치는 영향 (The Effect of the Telephone Channel to the Performance of the Speaker Verification System)

  • 조태현;김유진;이재영;정재호
    • 한국음향학회지
    • /
    • 제18권5호
    • /
    • pp.12-20
    • /
    • 1999
  • 본 논문에서는 깨끗한 환경에서 녹음된 음성데이터와 채널환경에서 수집된 음성데이터의 화자확인 성능을 비교하였다. 채널데이터의 화자확인 성능을 향상시키기 위하여 채널환경에 강인한 특징 파라메타 및 전처리에 대해 연구하였다. 실험을 위한 음성 DB는 어구지시(text-prompted) 시스템을 고려하여 두 자리의 한국어 숫자음으로 구성하였다. 적용한 음성 특징은 LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair)이며, 채널 잡음을 제거하기 위한 전처리 과정으로는 음성신호에 대한 필터링을 적용하였다. 추출된 특징으로부터 채널의 영향을 제거 또는 보상하기 위해 cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl)를 적용하였다. 또한 각각의 특징 및 처리 방법에 대한 음성인식 성능을 제시함으로써 화자확인에서의 성능과 음성인식에서의 성능을 비교하였다. 적용한 음성 특징 및 처리 방법들에 대한 성능 평가를 위해 HTK(HMM Tool Kit) 2.0을 이용하였다. 남자, 여자 화자별로 임계값을 다르게 주는 방법으로 깨끗한 음성데이터와 채널 데이터에 대한 EER(Equal Error Rate)을 구하여 비교하였다. 실험결과 전처리 과정에서 대역통과 필터(150~3800Hz)를 적용하여 저대역 및 고대역의 채널 잡음을 제거하고, 이 신호로부터 MFCC를 추출하였을 때 EER 측면에서의 화자확인 성능이 가장 좋게 나타났다.

  • PDF