• Title/Summary/Keyword: noise robustness

Search Result 563, Processing Time 0.026 seconds

Information Potential and Blind Algorithms Using a Biased Distribution of Random-Order Symbols (랜덤 심볼열의 바이어스된 분포를 이용한 정보 포텐셜과 블라인드 알고리즘)

  • Kim, Namyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.26-32
    • /
    • 2013
  • Blind algorithms based on Information potential of output samples and a set of symbols generated in random order at the receiver go through performance degradation when biased impulsive noise is added to the channel since the cost function composed of information potentials has no variable to deal with biased signal. Aiming at the robustness against biased impulsive noise, we propose, in this paper, a modified information potential, and derived related blind algorithms based on augmented filter structures and a set of random-order symbols. From the simulation results of blind equalization for multipath channels, the blind algorithm based on the proposed information potential produced superior convergence performance in the environments of strong biased impulsive noise.

A DEMON Processing Robust to Interference of Tonals (토널 신호 간섭에 강인한 데몬 처리 기법)

  • Kim, Jin-Seok;Hwang, Soo-Bok;Lee, Chul-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Passive sonars employ DEMON(Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. However, the conventional DEMON processing suffers from the interference of tonal signals because it extracts propeller signals and some types of tonal signals as well. If there are some tonals in the frequency band for DEMON processing, the conventional DEMON processing may additionally extract frequency informations originated from the interaction between different tonals. In this paper, we propose a modified DEMON processing, which can eliminate the interference of the tonals. The proposed algorithm removes tonals in DEMON processing band before demodulation processing, hence results the robustness to the interference of the tonals. Some numerical simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.

Shift and Noise Tolerance Encryption System Using a Joint Transform Correlator (결합 변환 상관기를 이용한 잡음 및 변이에 강한 암호화 시스템)

  • 서동환;김수중
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.499-506
    • /
    • 2003
  • In this paper, we propose the shift and noise tolerance method using a virtual phase image and a joint transform correlator (JTC) architecture that can alleviate the need for an accurate optical axis alignment. An encrypted image is obtained by the Fourier transform of the product of a phase- encoded virtual image to camouflage the original one and a random phase image. Therefore, even if unauthorized users analyze the encrypted image, we can prevent the possibility of counterfeiting from unauthorized people using virtual image which dose not contain any information from the original image. We demonstrate the robustness to noise, to data loss and to shift of the encrypted image using a JTC in the proposed description technique.

Design and Response Analysis of Wideband Monopulse Radar System Robust to Noise Jamming Signal (잡음 재밍 신호에 강인한 광대역 모노펄스 레이더 시스템 설계 및 응답 특성 분석)

  • Shin, Bohun;Yang, Haejoon;Kim, Changyeol;Park, Soryoung;Noh, Sanguk;Nam, Ilku
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.94-102
    • /
    • 2018
  • In this paper, the wideband mono-pulse radar using AGC and limiter is designed. The output response characteristics of the mono-pulse radar using AGC and limiter are analyzed, respectively. In addition, the output response for jamming input signals is analyzed. The range tracking loop in the mono-pulse radar has robust output response to the noise jamming input signal. Although the output settling response of the AGC-based mono-pulse radar is larger than that of the limiter-based mono-pulse radar, the AGC-based mono-pulse radar has robustness to the noise jamming input signal due to feedback loop.

A Study on the Selection of the Optimal Insertion Region for Digital Watermarking in the Frequency Domain (주파수 영역에서의 최적 워터마크 삽입영역 선정에 대한 연구)

  • 오재호;조시용;김선형
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.36-40
    • /
    • 2002
  • In this paper, we proposed a digital watermarking method based on the edge-wavelet transform to protect digital contents copyrights. We find out the optimal watermark insertion region and the proper amount of watermark in order to satisfy robustness and imperceptibility against various attacks such as noise, compression, collusion, clipping, scaling. Especially through this experiment, we could find out the adequate location of watermark insertion and proper amount of watermark and it is also viewed to satisfy robustness and imperceptibility in the lower frequency region with small watermark quantity.

  • PDF

Cluster-based Linear Projection and %ixture of Experts Model for ATR System (자동 목표물 인식 시스템을 위한 클러스터 기반 투영기법과 혼합 전문가 구조)

  • 신호철;최재철;이진성;조주현;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.203-216
    • /
    • 2003
  • In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.

A Robust Fault Location Algorithm for Single Line-to-ground Fault in Double-circuit Transmission Systems

  • Zhang, Wen-Hao;Rosadi, Umar;Choi, Myeon-Song;Lee, Seung-Jae;Lim, Il-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This paper proposes an enhanced noise robust algorithm for fault location on double-circuit transmission line for the case of single line-to-ground (SLG) fault, which uses distributed parameter line model that also considers the mutual coupling effect. The proposed algorithm requires the voltages and currents from single-terminal data only and does not require adjacent circuit current data. The fault distance can be simply determined by solving a second-order polynomial equation, which is achieved directly through the analysis of the circuit. The algorithm, which employs the faulted phase network and zero-sequence network with source impedance involved, effectively eliminates the effect of load flow and fault resistance on the accuracy of fault location. The proposed algorithm is tested using MATLAB/Simulink under different fault locations and shows high accuracy. The uncertainty of source impedance and the measurement errors are also included in the simulation and shows that the algorithm has high robustness.

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper

  • Aly, Aly Mousaad
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.473-500
    • /
    • 2014
  • Tuned mass dampers (TMDs) have been installed in many high-rise buildings, to improve their resiliency under dynamic loads. However, high-rise buildings may experience natural frequency changes under ambient temperature fluctuations, extreme wind loads and relative humidity variations. This makes the design of a TMD challenging and may lead to a detuned scenario, which can reduce significantly the performance. To alleviate this problem, the current paper presents a proposed approach for the design of a robust and efficient TMD. The approach accounts for the uncertain natural frequency, the optimization objective and the input excitation. The study shows that robust design parameters can be different from the optimal parameters. Nevertheless, predetermined optimal parameters are useful to attain design robustness. A case study of a high-rise building is executed. The TMD designed with the proposed approach showed its robustness and effectiveness in reducing the responses of high-rise buildings under multidirectional wind. The case study represents an engineered design that is instructive. The results show that shear buildings may be controlled with less effort than cantilever buildings. Structural control performance in high-rise buildings may depend on the shape of the building, hence the flow patterns, as well as the wind direction angle. To further increase the performance of the robust TMD in one lateral direction, active control using LQG and fuzzy logic controllers was carried out. The performance of the controllers is remarkable in enhancing the response reduction. In addition, the fuzzy logic controller may be more robust than the LQG controller.

Adaptive Watermarking Algorithm Using Fuzzy Reasoning and Hybrid Scheme (퍼지추론과 혼합기법을 적용한 적응적 워터마킹 알고리즘)

  • Kim, Yoon-Ho;Kim, Tae-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.1
    • /
    • pp.74-81
    • /
    • 2008
  • In this paper, adaptive watermarking algorithm which based on fuzzy reasoning and hybrid scheme is presented. To enforce the time and space complexity, hybrid scheme which utilize a color information as well as visual characteristics is also addressed. Proposed approach have double-aim: in first to use the visual characteristics so as to enforce the robustness of watermarking, and in second to select the optimal sub-band which is to be embedded a watermark. One of the principal advantage is that this approach involved the fuzzy inference module which is designed to select an optimal sub-band from the DWT coefficient blocks. In order to demonstrate the effectiveness of proposed algorithm, some numerical experiments of robustness and imperceptibility are evaluated with respect to such attacks as JPEG compression, noise and cropping.

  • PDF